Skip to main content
Log in

CO2 hydrogenation over cobalt-containing catalysts

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

Carbon dioxide hydrogenation over catalysts consisting of 0.56–45 wt % cobalt supported on carbon nanotubes (CNTs), carbon nanofibers, few-layer graphite fragments, or CNTs–Al2O3 composites has been investigated. All of the Co/support catalytic systems have been characterized by temperature-programmed reduction, transmission electron microscopy, and scanning electron microscopy. Under the conditions of our catalytic experiment (1 atm, 180–500°C), the CO2 hydrogenation products are CH4 and/or CO and the activity of the catalysts depends on the size and phase state of the cobalt particles. The CNTs-supported materials containing less than 5 wt % Co are catalytically inactive because of the amorphism of the metal. They can be activated by cobalt crystallization by means of heat treatment. The size of the cobalt particles deposited on the carbon supports is about 4 nm. Methods of functionalizing the carbon nanomaterial surface for additional stabilization of metal nanoparticles are suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang, Q., Deng, W., and Wang, Y., J. Energy Chem., 2013, vol. 22, no. 1, p. 27.

    Article  Google Scholar 

  2. Lapidus, A. and Ping, Ya.Yu., Russ. Chem. Rev., 1981, vol. 50, p. 63.

    Article  Google Scholar 

  3. Krylov, O.V. and Mamedov, A.Kh., Russ. Chem. Rev., 1995, vol. 64, p. 877.

    Article  Google Scholar 

  4. Saeidi, S., Amin, N., and Rahimpour, M.R., J. CO 2 Util., 2014, vol. 5, p. 66.

    Article  CAS  Google Scholar 

  5. Yu, K., Curcic, I., Gabriel, J., and Tsang, S., ChemSusChem, 2008, vol. 1, p. 893.

    Article  CAS  Google Scholar 

  6. Vlasenko, V.M., Kataliticheskaya ochistka gazov (Catalytic Gas Purification), Kiev: Tekhnika, 1973.

    Google Scholar 

  7. Martinelli, M., Lietti, L., Forzatti, P., Bassano, C., and Deiana, P., Catal. Today, 2014, vol. 228, p. 77.

    Article  CAS  Google Scholar 

  8. Barrett, E.P., Joyner, L.G., and Halenda, P.P., J. Am. Chem. Soc., 1951, vol. 73, p. 373.

    Article  CAS  Google Scholar 

  9. RF Patent 2310601, 2007.

  10. Savilov, S.V., Arkhipova, E.A., Ivanov, A.S., Maslakov, K.I., Shen, Z., Aldoshin, S.M., and Lunin, V.V., Mater. Res. Bull., 2015, vol. 69, p. 7.

    Article  CAS  Google Scholar 

  11. Kumari, L., Zhang, T., Du, G.H., Li, W.Z., Wang, Q.W., Datye, A., and Wu, K.H., Compos. Sci. Technol., 2008, vol. 68, p. 2178.

    Article  CAS  Google Scholar 

  12. Mugtasimov, A., Chernavskii, P.A., Pankina, G.V., and Lunin, V.V., Russ. J. Phys. Chem. A, 2011, vol. 85, no. 2, p. 217.

    Article  CAS  Google Scholar 

  13. Usachev, D.Yu., Fedorov, A.V., Vilkov, O.Yu., Sen’kovskii, B.V., Adamchuk, V.K., Andryushechkin, B.V., and Vyalykh, D.V., Fiz. Tverd. Tela, 2013, vol. 55, no. 6, p. 1231.

    Google Scholar 

  14. Guo, B., Liu, Q., Chen, E., Zhu, H., Fang, L., and Gong, J., Nano Lett., 2010, vol. 10, p. 4975.

    Article  CAS  Google Scholar 

  15. Gao, H., Song, L., Guo, W., Huang, L., Yang, D., Wang, F., Zuo, Y., Fan, X., Liu, Z., Gao, W., Vajtai, R., Hackenberg, K., and Ajayan, P.M., Carbon, 2012, vol. 50, p. 4476.

    Article  CAS  Google Scholar 

  16. Ivanova, T.M., Maslakov, K.I., Savilov, S.V., Ivanov, A.S., Egorov, A.V., Lin’ko, R.V., and Lunin, V.V., Russ. Chem. Bull., 2013, vol. 62, no. 3, p. 640.

    Article  CAS  Google Scholar 

  17. Rasheed, A., Howe, J., Dadmun, M., and Britt, P., Carbon, 2007, vol. 45, p. 1072.

    Article  CAS  Google Scholar 

  18. Trepanier, M., Tavasoli, A., Dalai, A.K., and Abatzoglou, N., Fuel Process. Technol., 2009, vol. 90, p. 367.

    Article  CAS  Google Scholar 

  19. Savilov, S., Ivanov, A., Suslova, E., Egorov, A., Antonov, P., and Lunin, V., Adv. Mater. Res., 2012, vol. 364, p. 444.

    Article  CAS  Google Scholar 

  20. Tavasoli, A., Abbaslou, R.M.M., Trepanier, M., and Dalai, A.K., Appl. Catal., A, 2008, vol. 345, p. 134.

    Article  CAS  Google Scholar 

  21. Karimi, A., Nasernejad, B., Rashidi, M., Tavasoli, A., and Pourkhalil, M., Fuel, 2014, vol. 117, p. 1045.

    Article  CAS  Google Scholar 

  22. Bezemer, G.L., Bitter, J., Kuipers, H., Oosterbeek, H., Holewijn, J., Xu, X., Kapteijn, F., Dillen, A., and Jong, K., J. Am. Chem. Soc., 2006, vol. 128, no. 12, p. 3956.

    Article  CAS  Google Scholar 

  23. Pour, A., Hosaini, E., Tavasoli, A., Behroozsarand, A., and Dolati, F., J. Nat. Gas Sci. Eng., 2014, vol. 21, p. 772.

    Article  Google Scholar 

  24. Abbaslou, R.M., Soltan, J., and Dalai, A.K., Appl. Catal., A, 2010, vol. 379, nos. 1–2, p. 129.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Suslova.

Additional information

Original Russian Text © E.V. Suslova, S.A. Chernyak, A.V. Egorov, S.V. Savilov, V.V. Lunin, 2015, published in Kinetika i Kataliz, 2015, Vol. 56, No. 5, pp. 655–662.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suslova, E.V., Chernyak, S.A., Egorov, A.V. et al. CO2 hydrogenation over cobalt-containing catalysts. Kinet Catal 56, 646–654 (2015). https://doi.org/10.1134/S0023158415050183

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158415050183

Keywords

Navigation