Skip to main content
Log in

Role of PdAg interface in Pd-Ag/SiO2 bimetallic catalysts in low-temperature oxidation of carbon monoxide

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

An approach to the development of bimetallic nanoparticles with the separated but interacting phases of silver and palladium was proposed to effectively separate the active sites of silver, which possess high activity in activation of molecular oxygen, and the sites of palladium-containing phases, which are responsible for CO adsorption. The structure of PdAg particles was determined using X-ray diffraction analysis, electronic diffuse reflectance spectroscopy, and temperature-programmed reduction. It was found that the introduction of silver led to easier reduction of palladium from oxidized states in an atmosphere of CO. The activity of the bimetallic PdAg catalysts in the oxidation of CO increased, as compared with that of the Pd/SiO2 catalyst. The oxidized bimetallic catalyst, in which palladium occurred in an oxide state, was even more effective in the oxidation of CO; this can be related to the better cooperation of the active sites of silver and palladium oxide, which are responsible for the activation and conversion of CO and oxygen at the Ag-PdO interfacial boundary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gonzalez, S., Neyman, K.M., Shaikhutdinov, S., Freund, H.J., and Illas, F., J. Phys. Chem. C, 2007, vol. 111, p. 6852.

    Article  CAS  Google Scholar 

  2. Sun, S.H., Murray, C.B., Weller, D., Folks, L., and Moser, A., Science, 2000, vol. 287, p. 1989.

    Article  CAS  Google Scholar 

  3. Chung, Y.M. and Rhee, H.K., J. Mol. Catal. A: Chem., 2003, vol. 206, p. 291.

    Article  CAS  Google Scholar 

  4. Mei, D., Hansen, E.W., and Neurock, M., J. Phys. Chem. B, 2003, vol. 107, p. 798.

    Article  CAS  Google Scholar 

  5. Ferrando, R., Jellinek, J., and Johnston, R.L., Chem. Rev., 2008, vol. 108, p. 845.

    Article  CAS  Google Scholar 

  6. Stamenkovic, V.R., Fowler, B., Mun, B.S., Wang, G., Ross, P.N., Lucas, C.A., and Markovic, N.M., Science, 2007, vol. 315, p. 493.

    Article  CAS  Google Scholar 

  7. Tao, F., Grass, M.E., Zhang, Y., Butcher, D.R., Renzas, J.R., Liu, Z., Chung, J.Y., Mun, B.S., Salmeron, M., and Somorjai, G.A., Science, 2008, vol. 322, p. 932.

    Article  CAS  Google Scholar 

  8. Lim, B., Jiang, M., Camargo, P.H.C., Cho, E.C., Tao, J., Lu, X., Zhu, Y., and Xia, Y., Science, 2009, vol. 324, p. 1302.

    Article  CAS  Google Scholar 

  9. Omori, T., Ando, K., Okano, M., Xu, X., Tanaka, Y., Ohnuma, I., Kainuma, R., and Ishida, K., Science, 2011, vol. 333, p. 68.

    Article  CAS  Google Scholar 

  10. Gonzalez, E., Arbiol, J., and Puntes, V.F., Science, 2011, vol. 334, p. 1377.

    Article  CAS  Google Scholar 

  11. Chen, M., Kumar, D., Yi, C.W., and Goodman, D.W., Science, 2005, vol. 310, p. 291.

    Article  CAS  Google Scholar 

  12. Kesavan, L., Tiruvalam, R., Ab Rahim, M.H., bin Saiman, M.I., Enache, D.I., Jenkins, R.L., Dimitratos, N., Lopez-Sanchez, J.A., Taylor, S.H., Knight, D.W., Kiely, C.J., and Hutchings, G.J., Science, 2011, vol. 331, p. 195.

    Article  CAS  Google Scholar 

  13. Kyriakou, G., Boucher, M.B., Jewell, A.D., Lewis, E.A., Lawton, T.J., Baber, A.E., Tierney, H.L., Flytzani-Stephanopoulos, M., and Sykes, E.C.H., Science, 2012, vol. 335, p. 1209.

    Article  CAS  Google Scholar 

  14. Tao, F., Chem. Soc. Rev., 2012, vol. 41, p. 7977.

    Article  CAS  Google Scholar 

  15. Zhang, Y., Diao, W., Williams, C.T., and Monnier, J.R., Appl. Catal., A, 2014, vol. 469, p. 419.

    Article  CAS  Google Scholar 

  16. Lee, J.H., Kim, S.K., Ahn, I.Y., Kim, W.-J., and Moon, S.H., Catal. Commun., 2011, vol. 12, p. 1251.

    Article  CAS  Google Scholar 

  17. Hirasawa, S., Watanabe, H., Kizuka, T., Nakagawa, Y., and Tomishige, K., J. Catal., 2013, vol. 300, p. 205.

    Article  CAS  Google Scholar 

  18. Liotta, L.F., Venezia, V., Deganello, G., Longo, A., Martorana, A., Schay, Z., and Guczi, L., Catal. Today, 2001, vol. 66, p. 271.

    Article  CAS  Google Scholar 

  19. Hirasawa, S., Nakagawa, Y., and Tomishige, K., Catal. Sci. Technol., 2012, vol. 2, p. 1150.

    Article  CAS  Google Scholar 

  20. Luo, Y., Xiao, Y., Cai, G., Zheng, Y., and Wei, K., Fuel, 2012, vol. 93, p. 533.

    Article  CAS  Google Scholar 

  21. Yang, C.-C., Wan, C.-C., and Wang, Y.-Y., J. Colloid Interface Sci., 2004, vol. 279, p. 433.

    Article  CAS  Google Scholar 

  22. Sanyal, U., Davis, D.T., and Jagirdar, B.R., Dalton Trans., 2013, vol. 42, p. 7147.

    Article  CAS  Google Scholar 

  23. Venezia, A.M., Liotta, L.F., Deganello, G., Schay, Z., Horvath, D., and Guczi, L., Appl. Catal., A, 2001, vol. 211, p. 167.

    Article  CAS  Google Scholar 

  24. Moss, R.L. and Whalley, L., Adv. Catal., 1972, vol. 22, p. 115.

    CAS  Google Scholar 

  25. Wang, C., Yin, H., Dai, S., and Sun, S., Chem. Mater., 2010, vol. 22, p. 3277.

    Article  CAS  Google Scholar 

  26. Wu, D., Fan, H., Li, Y., Zhang, Y., Liang, H., and Wei, Q., Biosens. Bioelectron., 2013, vol. 46, p. 91.

    Article  CAS  Google Scholar 

  27. Wei, Q., Xiang, Z., He, J., Wang, G., Li, H., Qian, Z., and Yang, M., Biosens. Bioelectron., 2010, vol. 26, p. 627.

    Article  CAS  Google Scholar 

  28. Dutov, V.V., Mamontov, G.V., and Vodyankina, O.V., Izv. Vyssh. Uchebn. Zaved., Fiz., 2011, no. 12/2, p. 21.

    Google Scholar 

  29. Zhuravlev, L.T., Colloids Surf. A, 2000, vol. 173, p. 1.

    Article  CAS  Google Scholar 

  30. Baylet, A., Marecot, P., Duprez, D., Castellazzi, P., Groppi, G., and Forzatti, P., Phys. Chem. Chem. Phys., 2011, vol. 13, p. 4607.

    Article  CAS  Google Scholar 

  31. Zhu, H., Qin, Z., Shan, W., Shen, W., and Wang, J., J. Catal., 2004, vol. 225, p. 267.

    Article  CAS  Google Scholar 

  32. Furusawa, T., Seshan, K., Lercher, J.A., Lefferts, L., and Aika, K., Appl. Catal., B, 2002, vol. 37, p. 205.

    Article  CAS  Google Scholar 

  33. Mamontov, G.V., Izaak, T.I., Magaev, O.V., Knyazev, A.S., and Vodyankina, O.V., Russ. J. Phys. Chem., 2011, vol. 85, p. 1536.

    Article  Google Scholar 

  34. Mamontov, G.V., Dutov, V.V., Sobolev, V.I., and Vodyankina, O.V., Kinet. Catal., 2013, vol. 54, no. 4, p. 487.

    Article  CAS  Google Scholar 

  35. Karski, S., Witońska, I., Rogowski, J., and Goluchowska, J., J. Mol. Catal. A: Chem., 2005, vol. 240, p. 155.

    CAS  Google Scholar 

  36. Ogden, J.S., Bogdanchikova, N.E., Corker, J.M., and Petranovskii, V.P., Eur. Phys. J. D, 1999, vol. 9, p. 605.

    Article  CAS  Google Scholar 

  37. Bogdanchikova, N.E., Petranovskiia, V.P., Machorro, R., Sugi, Y., Soto, V., and Fuentes, S., Appl. Surf. Sci., 1999, vol. 150, p. 58.

    Article  CAS  Google Scholar 

  38. Ershov, B.G. and Abkhalimov, E.V., Kolloidn. Zh., 2007, vol. 69, no. 5, p. 620.

    Google Scholar 

  39. Raffi, M., Akhter, J.I., and Hasan, M.M., Mater. Chem. Phys., 2006, vol. 99, p. 405.

    Article  CAS  Google Scholar 

  40. Ershov, B.G., Ross. Khim. Zh., 2001, vol. 45, no. 3, p. 20.

    CAS  Google Scholar 

  41. Sanyal, U., Davis, D.T., and Jagirdar, B.R., Dalton Trans., 2013, vol. 42, p. 7147.

    Article  CAS  Google Scholar 

  42. Slavinskaya, E.M., Stonkus, O.A., Gulyaev, R.V., Ivanova, A.S., Zaikovskii, V.I., Kuznetsov, P.A., and Boronin, A.I., Appl. Catal., A, 2011, vol. 401, p. 83.

    Article  CAS  Google Scholar 

  43. Lashina, E.A., Slavinskaya, E.M., Chumakova, N.A., Stonkus, O.A., Gulyaev, R.V., Stadnichenko, A.I., Chumakov, G.A., Boronin, A.I., and Demidenko, G.V., Chem. Eng. Sci., 2012, vol. 83, p. 149.

    Article  CAS  Google Scholar 

  44. Mamontov, G.V., Magaev, O.V., Knyazev, A.S., and Vodyankina, O.V., Catal. Today, 2013, vol. 203, p. 122.

    Article  CAS  Google Scholar 

  45. Mamontov, G.V., Knyazev, A.S., Paukshtis, E.A., and Vodyankina, O.V., Kinet. Catal., 2013, vol. 54, no. 6, p. 735.

    Article  CAS  Google Scholar 

  46. Qu, Z., Huang, W., Cheng, M., and Bao, X., J. Phys. Chem. B, 2005, vol. 109, p. 15842.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. V. Mamontov.

Additional information

Original Russian Text © I.S. Bondarchuk, G.V. Mamontov, 2015, published in Kinetika i Kataliz, 2015, Vol. 56, No. 3, pp. 382–388.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bondarchuk, I.S., Mamontov, G.V. Role of PdAg interface in Pd-Ag/SiO2 bimetallic catalysts in low-temperature oxidation of carbon monoxide. Kinet Catal 56, 379–385 (2015). https://doi.org/10.1134/S0023158415030027

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158415030027

Keywords

Navigation