Skip to main content
Log in

Conditions of deposition of TiCl4 used in preparing the silylated Ti-HMS and their effect on catalytic epoxidation of propylene

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

Silylated Ti catalysts based on hexagonal mesoporous silica (Ti-HMS) were prepared by chemical vapor deposition of TiCl4 on HMS silica modified by vapor silylation. The influence of TiCl4 deposition conditions on surface properties and catalytic performance of the catalysts were investigated. Among the methods used to characterize the catalysts were N2-adsorption, Inductively coupled plasma-atomic emission spectrometry (ICP-AES), Ultraviolet-visible spectroscopy (UV-Vis), Raman spectroscopy. Catalytic activity was evaluated in the epoxidation of propylene using cumene hydroperoxide (CHP) as oxidant. Most of Ti ions in HMS mesoporous silica occupy tetrahedral sites and these sites are responsible for the efficient epoxidation activity. The Ti content incorporated in silica decreases with increasing calcination temperature. The experiments indicated 400°C as an appropriate deposition temperature since higher deposition temperatures favor the formation of low active Ti species. A deposition time of 2 h is a sufficient time interval for incorporating Ti into HMS mesoporous silica. A suitable calcination temperature can be estimated as 700°C while higher calcination temperatures promote the formation of low active Ti species. Propylene oxide in high yields (> 95%) can be obtained in the epoxidation of propylene over the catalysts described in the work. The mechanism proposed for the deposition reaction suggests that the incorporation of Ti into HMS is due to silica interaction of Si-OH with TiCl4, chlorination removes Cl-containing Ti species and in this way decreases the Ti content of catalysts at high deposition temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nijhuis, T.A., Makkee, M., Moulijn, J.A., and Weckhuysen, B.M., Ind. Eng. Chem. Res., 2006, vol. 45, p. 3447.

    Article  CAS  Google Scholar 

  2. Notari, B., Catal. Today, 1993, vol. 18, p. 163.

    Article  CAS  Google Scholar 

  3. Serrano, D.P., Li, H.X., and Davis, M.E., J. Chem. Soc., Chem. Commun., 1992, p. 745.

    Google Scholar 

  4. Camblor, M.A., Corma, A., Martínez, A., and Párez-Pariente, J., J. Chem., Soc. Chem. Commun., 1992, p. 589.

    Google Scholar 

  5. Corma, A., Navarro, M.T., and Pérez-Pariente, J., J. Chem. Soc., Chem. Commun., 1994, p. 147.

    Google Scholar 

  6. Tanev, P.T., Chibwe, M., and Pinnavaia, T.J., Nature, 1994, vol. 368, p. 321.

    Article  CAS  Google Scholar 

  7. Mandache, I., Parvulescu, V.I., Popescu, A., Parvulescu, L., Banciu, M.D., Amoros, P., and Beltran, D., Trong On, D., and Kaliaguine S., Microporous Mesoporous Mater., 2005, vol. 81, p. 115.

    Article  CAS  Google Scholar 

  8. Wu, P. and Iwamoto, M., J. Chem. Soc., Faraday Trans., 1998, vol. 94, p. 2871.

    Article  CAS  Google Scholar 

  9. Wu, P. and Tatsumi, T., Chem. Mater., 2002, vol. 14, p. 1657.

    Article  CAS  Google Scholar 

  10. Yonemitsu, M., Tanaka, Y., and Iwamoto, M., Chem. Mater., 1997, vol. 9, p. 2679.

    Article  CAS  Google Scholar 

  11. Maschmeyer, T., Rey, F., Sankar, G., and Thomas, J.M., Nature, 1995, vol. 378, p. 159.

    Article  CAS  Google Scholar 

  12. Li, K.T. and Lin, C.C., Catal. Today, 2004, vol. 97, p. 257.

    Article  CAS  Google Scholar 

  13. Chiker, F., Nogier, J.P., Launay, F., and Bonardet, J.L., Appl. Catal., A, 2003, vol. 243, p. 309.

    Article  CAS  Google Scholar 

  14. Pena, M.L., Dellarocca, V., Rey, F., Corma, A., Coluccia, S., and Marchese, L., Microporous Mesoporous Mater., 2001, vols. 44–45, p. 345.

    Article  Google Scholar 

  15. Sever, R.R., Alcala, R.A., Dumesic, J.A., and Root, T.W., Microporous Mesoporous Mater., 2003, vol. 66, p. 53.

    Article  CAS  Google Scholar 

  16. Buijink, J.K.F., Van Vlaanderen, J.J.M., Crocker, M., and Niele, F.G.M., Catal. Today, 2004, vols. 93–95, p. 199.

    Article  Google Scholar 

  17. US Patent 6646138, 2003.

  18. Li, X.F., Gao, H.X., Jin, G.J., Chen, L., Ding, L., Yang, H.Y., and Chen, Q.L., J. Mol. Struct., 2008, vol. 872, p. 10.

    Article  CAS  Google Scholar 

  19. Yang, Q.H., Wang, S.L., Lu, J.Q., Xiong, G., Feng, Z.C., Xin, Q., and Li, C., Appl. Catal., A, 2000, vols. 194–195, p. 507.

    Article  Google Scholar 

  20. Li, K.T., Lin, P.H., and Lin, S.W., Appl. Catal., A, 2006, vol. 301, p. 59.

    Article  CAS  Google Scholar 

  21. Haukka, S., Lakomaa, E.L., and Root, A., J. Phys. Chem., 1993, vol. 97, p. 5085.

    Article  CAS  Google Scholar 

  22. Haukka, S., Lakomaa, E.L., Jylhä, O., Vilhunen, J., and Hornytzkyj, S., Langmuir, 1993, vol. 9, p. 3497.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. F. Li.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X.F., Wu, C.Z., Gao, H.X. et al. Conditions of deposition of TiCl4 used in preparing the silylated Ti-HMS and their effect on catalytic epoxidation of propylene. Kinet Catal 55, 770–776 (2014). https://doi.org/10.1134/S0023158414060093

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158414060093

Keywords

Navigation