Skip to main content
Log in

The effect of catalyst preparation on the activity of MoO3-SiO2 catalyst in transesterification of diethyl oxalate

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

Transesterification of diethyl oxalate (DEO) with phenol over MoO3-SiO2 catalysts prepared by the sol-gel technique (MoO3-SiO2 (SG)) and the impregnation method (MoO3-SiO2 (I)) was conducted to produce diphenyl oxalate (DPO), which can be used as a precursor for manufacturing diphenyl carbonate (DPC). The sample MoO3-SiO2 (SG) containing 12 wt % of MoO3 showed the best performance with 71.0% conversion of DEO and 32.0% selectivity to DPO. Compared to MoO3-SiO2 (I), improvements in the DEO conversion and DPO selectivity with MoO3-SiO2 (SG) were 16.1 and 7%, respectively. Crystal structure and phase composition of MoO3-SiO2 (I) and MoO3-SiO2 (SG) catalysts with varying MoO3 contents were investigated. The sample MoO3-SiO2 (SG) with a similar chemical composition to MoO3-SiO2 (I) has a larger specific surface area, indicating that the active component is well dispersed on the surface of the MoO3-SiO2 (SG) catalysts. Results of XRD and XPS measurements suggest a high degree of dispersion of MoO3-SiO2 (SG) catalysts that can account for an increase in DEO conversion and DPO selectivity. Coordinately unsaturated MoO3 species play a significant role in the catalytic performance of MoO3-SiO2 (SG) catalysts in transesterification of DEO with phenol. In addition, IR measurements of pyridine adsorption and NH3-TPD data indicate that the amount of acid sites on the surface of MoO3-SiO2 (SG) exceeds that found for the surface of MoO3-SiO2 (I). An enhanced concentration of surface MoO3 species in tetrahedral coordination coupled with the presence of weak Lewis acid sites appear to be the main reason why MoO3-SiO2 (SG) catalysts are superior to the MoO3-SiO2 (I) system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Freitag, D., Grico, U., Muller, P.R., and Nouvertne, W., in Encyclopedia of Polymer Science and Engineering, Mark, H.F., Ed., New York Wiley, 1987, vol. 11, p. 649.

  2. Sikdar, S.K., Chem. Tech., 1987, vol. 17, p. 112.

    CAS  Google Scholar 

  3. Janatpour, M. and Shafer, S.J., Eur. Patent 228672, 1987.

    Google Scholar 

  4. Ishii, H., Goyal, M., and Takeuchi, K., J. Mol. Catal. A: Chem., 1999, vol. 144, p. 477.

    Article  CAS  Google Scholar 

  5. Shaikh, A.G. and Sivaram, S., Chem. Rev., 1996, vol. 96, p. 951.

    Article  CAS  Google Scholar 

  6. Fu, Z.H. and Ono, Y., J. Mol. Catal. A: Chem., 1997, vol. 118, p. 293.

    Article  CAS  Google Scholar 

  7. Kim, W.B. and Lee, J.S., Catal. Lett., 1999, vol. 59, p. 83.

    Article  CAS  Google Scholar 

  8. Kim, W.B., Kim, Y.G., and Lee, S., Appl. Catal., A, 2000, vols. 194–195, p. 403.

    Article  Google Scholar 

  9. Ono, Y., Appl. Catal., A, 1997, vol. 155, p. 133.

    Article  CAS  Google Scholar 

  10. Wang, S.P., Liu, Y., Shi, Y., Ma, X.B., and Gong, J.L., AIChE J., 2008, vol. 54, p. 741.

    Article  CAS  Google Scholar 

  11. Liu, Y., Ma, X.B., Wang, S.P., and Gong, J.L., Appl. Catal., B, 2007, vol. 77, p. 125.

    Article  CAS  Google Scholar 

  12. Keigo, N., Shuji, T., Katsumasa, H., and Ryoji, S., US Patent 5834651, 1998.

  13. Keigo, N., Shuji, T., Katsumasa, H., Ryoji, S., Akinori, S., and Katsutoshi, W., US Patent 5922827, 1999.

  14. Ma, X.B., Gong, J.L., Wang, S.P., Gao, N., Wang, D.L., and Yang, X., Catal. Commun., 2004, vol. 5, p. 101.

    Article  CAS  Google Scholar 

  15. Gong, J.L., Ma, X.B., Yang, X., Wang, S.P., and Wen, S.D., Catal. Commun., 2004, vol. 5, p. 179.

    Article  CAS  Google Scholar 

  16. Wang, S.P., Ma, X.B., Gong, J.L., Yang, X., Guo, H.L., and Xu, G.H., Ind. Eng. Chem. Res., 2004, vol. 43, p. 4027.

    Article  CAS  Google Scholar 

  17. Ma, X.B., Guo, H.L., Wang, S.P., and Sun, Y.L., Fuel Process. Technol., 2003, vol. 83, p. 275.

    Article  CAS  Google Scholar 

  18. Gong, J.L., Ma, X.B., Wang, S.P., Liu, M.Y., Yang, X., and Xu, G.H., J. Mol. Catal. A: Chem., 2004, vol. 207, p. 215.

    Article  CAS  Google Scholar 

  19. Wang, S.P., Ma, X.B., Guo, H.L., Gong, J.L., Yang, X., and Xu, G.H., J. Mol. Catal. A: Chem., 2004, vol. 214, p. 273.

    Article  CAS  Google Scholar 

  20. Biradar, A.V., Umbarkar, S.B., and Dongare, M.K., Appl. Catal., A, 2005, vol. 285, p. 190.

    Article  CAS  Google Scholar 

  21. Bian, L., Wang, S.P., and Ma, X.B., J. Chin. Pet. Technol., 2009, vol. 38, p. 754.

    Google Scholar 

  22. Williams, C.C., Ekerdt, J.G., Jehng, J.M., Hardcastle, F.D., and Wach, I.E., J. Phys. Chem., 1991, vol. 95, p. 8781.

    Article  CAS  Google Scholar 

  23. Carbucicchio, M. and Triro, F., J. Catal., 1980, vol. 62, p. 13.

    Article  CAS  Google Scholar 

  24. Bruckman, K., Grzybowska, B., Che, M., and Tatibouet, J.M., Appl. Catal., A, 1993, vol. 96, p. 279.

    Article  Google Scholar 

  25. Ono, T., Miyata, H., and Kubokawa, Y., J. Chem. Soc., Faraday Trans., 1987, vol. 83, p. 1761.

    Article  CAS  Google Scholar 

  26. Zhao, B.Y., Xu, Q., Gui, L.L., and Tang, Y.Q., Acta Chim. Sinica, 1990, vol. 48, p. 227.

    CAS  Google Scholar 

  27. Knözinger, H., Science, 2000, vol. 287, p. 1407.

    Article  Google Scholar 

  28. Knözinger, H., Adv. Catal., 1976, vol. 25, p. 184.

    Google Scholar 

  29. Reddy, B.M., Chowdhury, B., and Smirniotis, P.G., Appl. Catal., A, 2001, vol. 211, p. 19.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. P. Wang.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bian, L., Wang, S.P. & Ma, X.B. The effect of catalyst preparation on the activity of MoO3-SiO2 catalyst in transesterification of diethyl oxalate. Kinet Catal 55, 763–769 (2014). https://doi.org/10.1134/S0023158414060032

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158414060032

Keywords

Navigation