Skip to main content
Log in

A detailed chemical kinetic mechanism for methanol combustion in laminar flames

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

On the basis of existing detailed kinetic schemes a general and consistent mechanism of the oxidation of methanol was compiled for computational studies covering a wide range of lean to rich flames. The proposed model, featuring 21 species and 115 reactions, has been validated using three data sets and the computed reactants, products and intermediates mole fractions. This scheme was compared to those by Held-Dryer, Egolfopolous and Pauwels under the same conditions. The developed mechanism predicts well the concentrations of the major reactants, intermediates, and products at all the studied equivalence ratios and it gives the best calculated values, as compared to the other used models, as well. The production rates analysis of selected species allowed the identification of the major formation and depletion pathways. A reaction path analysis snowed that the main channels in methanol consumption involved H, OH and O attack and the resulting radicals CH2OH and CH3O produced formaldehyde.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Verma, S.S., Energy Convers. Manage., 2002, vol. 43, p. 1999.

    Article  CAS  Google Scholar 

  2. Cooke, D.F., Dodson, M.G., and Williams, A., Combust. Flame, 1971, vol. 16, p. 233.

    Article  CAS  Google Scholar 

  3. Bowman, C.T., Combust. Flame, 1975, vol. 25, p. 343.

    Article  Google Scholar 

  4. Tsuboi, T. and Hashimoto, K., Combust. Flame, 1981, vol. 42, p. 61.

    Article  CAS  Google Scholar 

  5. Cribb, P.H., Dove, J.E., and Yamazaki, S., Combust. Flame, 1992, vol. 88, p. 186.

    Article  CAS  Google Scholar 

  6. Singh, S., Grosshandler, W., Malte, P.C., and Crain, R.W., Proc. Combust. Inst., 1979, vol. 17, p. 689.

    Google Scholar 

  7. Vandooren, J. and van Tiggelen, P.J., Proc. Combust. Inst., 1981, vol. 18, p. 473.

    Google Scholar 

  8. Grotheer, H.H., Kelm, S., Driver, H.S.T., Hutcheon, R.J., Lockett, R.D., and Robertson, G.N., Ber. Bunsen-Ges. Phys. Chem., 1992, vol. 96, p. 1360.

    Article  CAS  Google Scholar 

  9. Grotheer, H.H. and Just, T., Combust. Sci. Technol., 1993, vol. 91, p. 15.

    Article  CAS  Google Scholar 

  10. Bell, K.M. and Tipper, C.F.H., Trans. Faraday Soc., 1957, vol. 53, p. 982.

    Article  CAS  Google Scholar 

  11. Norton, T.S. and Dryer, F.L., Combust. Sci. Technol., 1989, vol. 63, p. 107.

    Article  CAS  Google Scholar 

  12. Alzueta, M.U., Bilbao, R., and Finestra, M., Energy Fuels, 2001, vol. 15, p. 724.

    Article  CAS  Google Scholar 

  13. Dayma, G., Ali, K.H., and Dagaut, P., Proc. Combust. Inst., 2007, vol. 31, p. 411.

    Article  Google Scholar 

  14. Rasmussen, C.L., Wassard, K.H., Johansen, K.D., and Glarborg, P., Int. J. Chem. Kinet., 2008, vol. 40, p. 423.

    Article  CAS  Google Scholar 

  15. Brock, E.E., Oshima, Y., Savage, P.E., and Barker, J.R., J. Phys. Chem., 1996, vol. 100, p. 15834.

    Article  CAS  Google Scholar 

  16. Anitescu, G., Zhang, Z., and Tavlarides, L.L., Ind. Eng. Chem. Res., 1999, vol. 38, p. 2231.

    Article  CAS  Google Scholar 

  17. Koda, S., Kanno, N., and Fujiwara, H., Ind. Eng. Chem. Res., 2001, vol. 40, p. 3861.

    Article  CAS  Google Scholar 

  18. Westbrook, C.K. and Dryer, F.L., Combust. Sci. Technol., 1979, vol. 20, p. 125.

    Article  CAS  Google Scholar 

  19. Dove, J.E. and Warnatz, J., Ber. Bunsen-Ges. Phys. Chem., 1983, vol. 87, p. 1040.

    Article  CAS  Google Scholar 

  20. Pauwels, J.F., Carlier, M., Devolder, P., and Sochet, L.R., Combust. Sci. Technol., 1989, vol. 64, p. 97.

    Article  CAS  Google Scholar 

  21. Egolfopoulos, F.N., Du, D.X., and Law, C.K., Combust. Sci. Technol., 1992, vol. 83, p. 33.

    Article  CAS  Google Scholar 

  22. Norton, T.S., PhD Dissertation, Princeton, N.J.: Princeton Univ., 1989.

  23. Held, T.J. and Dryer, F.L., Int. J. Chem. Kinet., 1998, vol. 30, p. 805.

    Article  CAS  Google Scholar 

  24. Li, J., Zhao, Z., Kazakov, A., Chaos, M., Dryer, F.L., and Scire, J.J., Int. J. Chem. Kinet., 2007, vol. 39, p. 109.

    Article  Google Scholar 

  25. Held, T.J. and Dryer, F.L., Proc. Combust. Inst., 1994, vol. 25, p. 901.

    Google Scholar 

  26. Lindstedt, R.P. and Meyer, M.P., Proc. Combust. Inst., 2002, vol. 29, p. 1395.

    Article  CAS  Google Scholar 

  27. Kee, R.J., Grcar, J.F., Smooke, M.D., and Miller, J.A., A Fortran Program for Modelling Steady Laminar Onedimensional Premixed Flames: Sandia National Laboratories Rep. SAND, 1985, p. 85.

  28. Kee, R.J., Rupley, F.M., and Miller, J.A., Chemkin II: A Fortran Chemical Kinetics Package for the Analysis of Gas Phase Chemical Kinetics. Sandia National Laboratories Rep. SAND, 1989, p. 89.

  29. Johnson, R.D. and Hudgens, J.W., J. Phys. Chem., 1996, vol. 100, p. 19874.

    Article  CAS  Google Scholar 

  30. Ruscic, B., Boggs, J.E., Burcat, A., Csaszar, A.G., Demaison, J., Janoschek, R., Martin, J.M.L., Morton, M.L., Rossi, M.J., Stanton, J.F., Szalay, P.G., Westmoreland, P.R., Zabel, F., and Berces, T., J. Phys. Chem. Ref. Data, 2005, vol. 34, p. 573.

    Article  CAS  Google Scholar 

  31. Gordon, S. and McBride, B.J., NASA SP, 1971, p. 273.

  32. Kee, R.J., Rupley, F.M., and Miller, J.A., Rep. No. SAND87-8215, Sandia National Laboratories, 1991.

  33. Bradley, D., Dixon-Lewis, G., El-Din, Habik, S., Kwa, L.K., and El-Sherif, S., Combust. Flame, 1991, vol. 85, p. 105.

    Article  CAS  Google Scholar 

  34. Wen-Chiun, I., Sheng, C.Y., and Bozzelli, J.W., Fuel Process. Technol., 2003, vol. 83, p. 111.

    Article  Google Scholar 

  35. Warnatz, J., Combustion Chemistry, Gardiner, W.C., Jr., Ed., New York: Springer, 1984, p. 197.

    Chapter  Google Scholar 

  36. Kristensen, P.G., Karll, B., Bendtsen, A.B., Glarborg, P., and Dam-Johansen, K., Combust. Sci. Technol., 2000, vol. 157, p. 262.

    Article  Google Scholar 

  37. Glarborg, P., Alzueta, M.U., Kjægaard, K., and Dam-Johansen, K., Combust. Flame, 2003, vol. 132, p. 629.

    Article  CAS  Google Scholar 

  38. Lamoureux, N., El-Bakali, A., Gasnot, L., Pauwels, J.F., and Desgroux, P., Combust. Flame, 2008, vol. 153, p. 186.

    Article  CAS  Google Scholar 

  39. Baulch, D.L., Cobos, C.J., Cox, R.A., Esser, C., Frank, P., Just, Th., Kerr, J.A., Pilling, M.J., Troe, J., Walker, R.W., and Warnatz, J.J., J. Phys. Chem. Ref. Data, 1992, vol. 21, p. 411.

    Article  CAS  Google Scholar 

  40. Baulch, D.L., Cobos, C.J., Cox, R.A., Frank, P., Hayman, G., Just, Th., Kerr, J.A., Murrells, T., Pilling, M.J., Troe, J., Walker, R.W., and Warnatz, J.J., J. Phys. Chem. Ref. Data, 1994, vol. 23, p. 847.

    Article  CAS  Google Scholar 

  41. Tsang, W. and Hampson, R.F., J. Phys. Chem. Ref. Data, 1986, vol. 15, p. 1087.

    Article  CAS  Google Scholar 

  42. Tsang, W., J. Phys. Chem. Ref. Data, 1987, vol. 16, p. 471.

    Article  CAS  Google Scholar 

  43. Frenklach, M., Wang, H., Goldenberg, M., Smith, G.P., Golden, M.M., Bowman, C.T., Hanson, R.K., Gardiner, W.C., and Lissianski, V.V., GRI-Mech, 1995.

  44. Mueller, M.A., Kim, T.J., Yetter, R.A., and Dryer, F.L., Int. J. Chem. Kinet., 1999, vol. 31, p. 113.

    Article  CAS  Google Scholar 

  45. Natarajan, K. and Roth, P., Combust. Flame, 1987, vol. 70, p. 267.

    Article  CAS  Google Scholar 

  46. Timonen, R.S., Ratajczak, E., and Gutman, D., J. Phys. Chem., 1987, vol. 91, p. 692.

    Article  CAS  Google Scholar 

  47. Hippler, H., Troe, J., and Willner, J.J., J. Chem. Phys., 1990, vol. 93, p. 1755.

    Article  CAS  Google Scholar 

  48. Troe, J., J. Phys. Chem., 1979, vol. 83, p. 114.

    Article  CAS  Google Scholar 

  49. Glarborg, P., Alzueta, M.U., Kjargaard, K., and Dam-Johansen, K., Combust. Flame, 2003, vol. 132, p. 629.

    Article  CAS  Google Scholar 

  50. Emdee, J.L., Brezinsky, K., and Glassman, I., J. Phys. Chem., 1992, vol. 96, p. 2151.

    Article  CAS  Google Scholar 

  51. Schatz, G.C., Wagner, A.F., and Dunning, T.H., J. Phys. Chem., 1984, vol. 88, p. 221.

    Article  CAS  Google Scholar 

  52. Scire, J.J., Yetter, R.A., and Dryer, F.L., Int. J. Chem. Kinet., 2001, vol. 33, p. 75.

    Article  CAS  Google Scholar 

  53. Li, J., PhD Dissertation, Prineceton, N.J.: Princeton Univ., 2004.

  54. Mueller, M.A., PhD Dissertation, Prineceton, N.J.: Princeton Univ., 2000.

  55. Wantuck, P.J., Oldenborg, R.C., Baughcum, S.L., and Winn, K.R., J. Phys. Chem., 1987, vol. 91, p. 4653.

    Article  CAS  Google Scholar 

  56. Wooldridge, M.S., Hanson, R.K., and Bowman, C.T., Int. J. Chem. Kinet., 1994, vol. 26, p. 389.

    Article  CAS  Google Scholar 

  57. Warnatz, J., Combustion Chemistry, Gardiner, W.C., Jr., Ed., New York: Springer, 1984, p. 204.

    Google Scholar 

  58. Miller, J.A. and Kee, R.J., J. Phys. Chem., 1977, vol. 81, p. 2534.

    Article  CAS  Google Scholar 

  59. Frenklach, M., Wang, H., and Rabinowitz, M.J., Prog. Energy Combust. Sci., 1992, vol. 18, p. 47.

    Article  Google Scholar 

  60. Michael, J.V. and Sutherland, J.W., J. Phys. Chem., 1988, vol. 92, p. 3853.

    Article  CAS  Google Scholar 

  61. Eskola, J. and Timonen, R.S., Phys. Chem. Chem. Phys., 2003, vol. 5, p. 2557.

    Article  CAS  Google Scholar 

  62. Zhang, H.Y. and Mckinnon, J.T., Combust. Sci. Technol., 1995, vol. 107, p. 261.

    Article  CAS  Google Scholar 

  63. Miller, J.A. and Melius, C.F., Combust. Flame, 1992, vol. 91, p. 21.

    Article  CAS  Google Scholar 

  64. Marinov, N.M., Pitz, W.J., Westbrook, C.K., Vincitore, A.M., Castaldi, M.J., Senkan, S.M., and Melius, C.F., Combust. Flame, 1998, vol. 114, p. 192.

    Article  CAS  Google Scholar 

  65. Hippler, H. and Troe, J., Chem. Phys. Lett., 1992, vol. 192, p. 333.

    Article  CAS  Google Scholar 

  66. Keil, G.D., Tanzawa, T., Skolnik, E.G., Klemm, R.B., and Michael, J.V., J. Chem. Phys., 1981, vol. 75, p. 2693.

    Article  CAS  Google Scholar 

  67. Cohen, N., Int. J. Chem. Kinet., 1986, vol. 18, p. 59.

    Article  CAS  Google Scholar 

  68. Dean, A.M. and Westmoreland, P.R., Int. J. Chem. Kinet., 1987, vol. 19, p. 207.

    Article  CAS  Google Scholar 

  69. Grotheer, H.H., Riekert, G., Walter, D., and Just, T., J. Phys. Chem., 1988, vol. 92, p. 4028.

    Article  CAS  Google Scholar 

  70. Cobos, C.J. and Troe, J.Z., Z. Phys. Chem., 1990, vol. 167, p. 129.

    Article  CAS  Google Scholar 

  71. Dean, A.M., J. Phys. Chem., 1985, vol. 89, p. 4600.

    Article  CAS  Google Scholar 

  72. De Avillez, Pereira R., Baulch, D.L., Pilling, M.J., Robertson, S.H., and Zeng, G., J. Phys. Chem., 1997, vol. 101, p. 9681.

    Article  Google Scholar 

  73. Bott, J.F. and Cohen, N., Int. J. Chem. Kinet., 1991, vol. 23, p. 1075.

    Article  CAS  Google Scholar 

  74. Page, M., Lin, M.C., He, Y., and Choudhury, T.K., J. Phys. Chem., 1989, vol. 93, p. 4404.

    Article  CAS  Google Scholar 

  75. Lim, K.P. and Michael, J.V., J. Chem. Phys., 1993, vol. 98, p. 3919.

    Article  CAS  Google Scholar 

  76. Dayma, G., Ali, K.H., and Dagaut, P., Proc. Combust. Inst, 2007, vol. 31, p. 411.

    Article  Google Scholar 

  77. Campbell, I.M., McLaughlin, D.F., and Handy, B.J., Chem. Phys. Lett., 1976, vol. 38, p. 362.

    Article  CAS  Google Scholar 

  78. Barnes, I., Bastian, V., Becker, K.H., Fink, E.H., and Zabel, F., Atmos. Environ., 1982, vol. 16, p. 545.

    Article  CAS  Google Scholar 

  79. Pagsberg, P., Munk, J., Sillesen, A., and Anastasi, C., Chem. Phys. Lett., 1988, vol. 146, p. 375.

    Article  CAS  Google Scholar 

  80. McCaulley, J.A., Kelly, N., Golde, M.F., and Kaufman, F., J. Phys. Chem., 1989, vol. 93, p. 1014.

    Article  CAS  Google Scholar 

  81. Nelson, L., Rattigan, O., Neavyn, R., Sidebottom, H., Treacy, J., and Nielsen, O.J., Int. J. Chem. Kinet., 1990, vol. 22, p. 1111.

    Article  CAS  Google Scholar 

  82. Dillon, T.J., Holscher, D., Sivakumaran, V., Horowitz, A., and Crowley, J.N., Phys. Chem. Chem. Phys., 2005, vol. 7, p. 349.

    Article  CAS  Google Scholar 

  83. Srinivasan, N.K., Su, M.C., and Michael, J.V., J. Phys. Chem., 2007, vol. 111, p. 3951.

    Article  CAS  Google Scholar 

  84. Hagele, J., Lorenz, K., Rhasa, D., and Zellner, R., Ber. Bunsen-Ges. Phys. Chem., 1983, vol. 87, p. 1023.

    Article  Google Scholar 

  85. Meier, U., Grotheer, H.H., Riekert, G., and Just, T., Ber. Bunsen-Ges. Phys. Chem., 1985, vol. 89, p. 325.

    Article  CAS  Google Scholar 

  86. Wallington, T.J. and Kurylo, M.J., Int. J. Chem. Kinet., 1987, vol. 19, p. 1015.

    Article  CAS  Google Scholar 

  87. Hess, W.P. and Tully, F.P., J. Phys. Chem., 1989, vol. 93, p. 1944.

    Article  CAS  Google Scholar 

  88. Baulch, D.L., Cobos, C.J., Cox, R.A., Frank, P., Hayman, G., Just, Th., Kerr, J.A., Pilling, M.J., Troe, J., Walker, R.W., and Warnatz, J., Combust. Flame, 1994, vol. 98, p. 59.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Guemini.

Additional information

Published in Russian in Kinetika i Kataliz, 2012, Vol. 53, No. 6, pp. 690–707.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hamdane, S., Rezgui, Y. & Guemini, M. A detailed chemical kinetic mechanism for methanol combustion in laminar flames. Kinet Catal 53, 648–664 (2012). https://doi.org/10.1134/S0023158412060055

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158412060055

Keywords

Navigation