Skip to main content
Log in

Influence of the mobility of oxygen on the reactivity of La1 − x Sr x MnO3 perovskites in methane oxidation

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

Radically different dependences of the activity of La1 − x Sr x MnO3 (x = 0−0.5) perovskites in methane oxidation on the degree of substitution of strontium for lanthanum are observed for low and high temperatures. Unsubstituted LaMnO3 exhibits the highest activity in the temperature range from 300 to 500°C, while the sample with the maximum degree of substitution (La0.5Sr0.5MnO3) shows the highest activity at higher temperatures of 700–900°C. In the low temperature region, the activity of La1t - x Sr x MnO3 is determined by the amount of weakly bound (overstoichiometric) oxygen, which is formed in cation-deficient lattices and is characterized by a thermal desorption peak with T max = 705°C. At higher temperatures (800–900°C), the strongly bound oxygen of the catalyst lattice is involved in the formation of the reaction products under both unsteady- and steady-state conditions. As a consequence, the catalytic activity in methane oxidation correlates with the apparent rate constant of oxygen diffusion in the oxide bulk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Boreskov, G.K., Sazonov, V.A., and Popovskii, V.V., Dokl. Akad. Nauk SSSR, 1967, vol. 176, p. 1331.

    CAS  Google Scholar 

  2. Popovskii, V.V., Boreskov, G.K., Muzykantov, V.S., Sazonov, V.A., and Shubnikov, S.G., Kinet. Katal., 1969, vol. 10, p. 786.

    CAS  Google Scholar 

  3. Popovskii, V.V., Kinet. Katal., 1972, vol. 13, p. 1190.

    CAS  Google Scholar 

  4. Yakovleva, I.S., Isupova, L.A., Rogov, V.A., and Sadykov, V.A., Kinet. Katal., 2008, vol. 49, no. 2, p. 274 [Kinet. Catal. (Engl. Transl.), vol. 49, no. 2, p. 261].

    Article  Google Scholar 

  5. Isupova, L.A., Yakovleva, I.S., Alikina, G.M., Rogov, V.A., and Sadykov, V.A., Kinet. Katal., 2005, vol. 46, p. 773 [Kinet. Catal. (Engl. Transl.), vol. 46, p. 729].

    Article  Google Scholar 

  6. Marchetti, L. and Forni, L., Appl. Catal., B, 1998, vol. 15, p. 179.

    Article  CAS  Google Scholar 

  7. Alifanti, M., Kirchnerova, J., Delmon, B., and Klvana, D., Appl. Catal., A, 2004, vol. 262, p. 167.

    Article  CAS  Google Scholar 

  8. Nitadori, T., Kurihara, S., and Misono, M., J. Catal., 1986, vol. 98, p. 221.

    Article  CAS  Google Scholar 

  9. Choudhary, T.V., Banerjee, S., and Choudhary, V.R., Appl. Catal., A, 2002, vol. 234, p. 1.

    Article  CAS  Google Scholar 

  10. Tejuca, L.G., Fierro, J.L.G., and Tascon, J.M.D., Adv. Catal., 1989, vol. 36, p. 237.

    Article  CAS  Google Scholar 

  11. Yamazoe, N. and Teraoka, Y., Catal. Today, 1990, vol. 8, p. 175.

    Article  CAS  Google Scholar 

  12. Sadykov, V.A., Kuznetsova, T.G., Simakov, A.V., Rogov, V.A., Zaikovskii, V.I., Moroz, E.M., Kochubei, D.I., Novgorodov, B.N., Ivanov, V.P., Trukhan, S.N., Litvak, G.S., Bulgakov, N.N., Lunin, V.V., and Kemnitz, E., Mater. Res. Soc. Symp. Proc., 2003, vol. 751.

  13. Happel, J., Isotopic Assessment of Heterogeneous Catalysis, Orlando, Fla.: Academic, 1986.

    Google Scholar 

  14. US Patent 3330697, 1967.

  15. Ivanov, D.V., Pinaeva, L.G., Isupova, L.A., Nadeev, A.N., Prosvirin, I.P., and Dovlitova, L.S., Catal. Lett. (in press).

  16. Shannon, S.L. and Goodwin, J.G., Jr., Chem. Rev., 1995, vol. 95, p. 677.

    Article  CAS  Google Scholar 

  17. Ivanov, D.V., Sadovskaya, E.M., Pinaeva, L.G., and Isupova, L.A., J. Catal., 2009, vol. 257, p. 5.

    Article  Google Scholar 

  18. Bal’zhinimaev, B.S. and Pinaeva, L.G., Kinet. Katal., 1995, vol. 36, p. 60.

    Google Scholar 

  19. Rentgenografiya (X-Ray Crystallography), Katsnel’son, A.A., Ed., Moscow: Mosk. Gos. Univ., 1986, p. 237.

    Google Scholar 

  20. Beznosikov, B.V. and Aleksandrov, K.S., Kristallografiya, 2000, vol. 45, no. 5, p. 864 [Crystallogr. Rep. (Engl. Transl.), vol. 45, no. 5, p. 792].

    CAS  Google Scholar 

  21. Mitchel, J.F., Argyriou, D.N., Potter, C.D., Hinks, D.G., Jorgensen, J.D., and Bader, S.D., Phys. Rev. B: Condens. Matter, 1996, vol. 54, p. 6172.

    Article  Google Scholar 

  22. Seiyama, T., Yamazoe, N., and Eguchi, K., Ind. Eng. Chem. Res., 1995, vol. 24, p. 19.

    Google Scholar 

  23. Ponce, S., Pena, M.A., and Fierro, J.L.G., Appl. Catal., B, 2000, vol. 24, p. 193.

    Article  CAS  Google Scholar 

  24. Muzykantov, V.S., Popovskii, V.V., and Boreskov, G.K., Kinet. Katal., 1964, vol. 5, p. 624.

    CAS  Google Scholar 

  25. Taskin, A. and Lavrov, A.N., Yoichi Ando, Appl. Phys. Lett., 2005, vol. 86, p. 0919110.

    Article  Google Scholar 

  26. Opila, E.J., Tuller, H.I., Wuensch, B.J., and Maier, J., J. Am. Ceram. Soc., 1993, vol. 76, p. 2363.

    Article  CAS  Google Scholar 

  27. Borovskikh, L., Mazo, G., and Kemnitz, E., Solid State Sci., 2003, vol. 5, p. 409.

    Article  CAS  Google Scholar 

  28. Lee, Y.N., Lago, R.M., Fierro, J.L., Cortes, V., Sapina, F., and Martinez, E., Appl. Catal., A, 2001, vol. 207, p. 17.

    Article  CAS  Google Scholar 

  29. Jinguang Deng, Yue Zhang, Hongxing Dai, Lei Zhang, Hong He, and Au, C.T., Catal. Today, 2008, vol. 139, p. 82.

    Article  Google Scholar 

  30. Lavasseur, B. and Kaliaguine, S., Appl. Catal., A, 2008, vol. 343, p. 29.

    Article  Google Scholar 

  31. Sadykov, V.A., Bulgakov, N.N., Muzykantov, V.S., Kuznetsova, T.G., Alikina, G.M., Lukashevich, A.I., Potapova, Yu.V., Rogov, V.A., Burgina, E.B., Zaikovskii, V.I., Moroz, E.M., Litvak, G.S., Yakovleva, I.S., Isupova, L.A., Zyryanov, V.V., Kemnitz, E., and Neophytides, S., in Mixed Ionic Electronic Conducting Perovskites for Advanced Energy Systems, Orlovskaya, N. and Browning, N., Eds., NATO Science Series II: Mathematics, Physics and Chemistry, 2003, vol. 173, p. 53.

  32. Vazhnova, T.G., Korchak, V.N., Krylov, O.V., Slin’ko, M.M., Kinet. Katal., 1985, vol. 26, p. 1378.

    CAS  Google Scholar 

  33. Petrolekas, P.D. and Matcalfe, I.S., J. Catal., 1995, vol. 152, p. 143.

    Article  Google Scholar 

  34. Ramzi Hammani, Salwa Ben Aissa, and Habib Batis, Appl. Catal., A, 2009, vol. 353, p. 145.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Ivanov.

Additional information

Original Russian Text © D.V. Ivanov, L.G. Pinaeva, E.M. Sadovskaya, L.A. Isupova, 2011, published in Kinetika i Kataliz, 2011, Vol. 52, No. 3, pp. 410–418.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ivanov, D.V., Pinaeva, L.G., Sadovskaya, E.M. et al. Influence of the mobility of oxygen on the reactivity of La1 − x Sr x MnO3 perovskites in methane oxidation. Kinet Catal 52, 401–408 (2011). https://doi.org/10.1134/S0023158411030086

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158411030086

Keywords

Navigation