Skip to main content
Log in

Kinetics, products, and mechanism of ethane destruction in corona discharge: Experiments and simulation

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

Ethane destruction in corona discharge was studied in a flow reactor. Samples from the reactor were analyzed by GC/MS and on a quadrupole mass spectrometer. Corona discharge was initiated at atmospheric pressure and room temperature in a cylindrical flow reactor with a dielectric barrier and an axial high-voltage electrode. The flow rate of the initial mixture was varied between 0.17 and 4.8 cm3/s; the discharge power, between 0.01 and 8.0 W. The radiation yield was 0.5 molecule/100 eV for 1% ethane in air. Simulation was carried out using the kinetic mechanism consisting of 809 reactions involving 85 types of molecules, atoms, radicals, and excited species. The so-called free-radical mechanism that we developed led to an underestimated ethane destruction efficiency. The model qualitatively describes the product composition and the concentrations of its main components, but it provides no quantitative fit to experimental data, particularly for low initial ethane concentrations. New products hitherto unreported in the literature—methyl nitrate, ethyl nitrate, and acetic acid—were identified and quantified. The results are interpreted in terms of ionic reactions as a part of the destruction mechanism. These reactions are of particular significance in dilute mixtures and at low hydrocarbon concentrations in the initial mixture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Krasnoperov, L.N., Krishtopa, L.G., and Bozzelli, J.W., J. Adv. Oxid. Technol., 1997, vol. 1, no. 3, p. 1.

    Google Scholar 

  2. Yamamoto, T., Ramanathan, K., Lawless, Ph.A., Ensor, D.S., Newsome, J.R., Plaks, N., and Ramsey, G.H., IEEE Trans. Ind. Appl., 1992, vol. 28, no. 3, p. 528.

    Article  CAS  Google Scholar 

  3. Storch, D.G. and Kushner, M.J., J. Appl. Phys., 1993, vol. 73, no. 1, p. 51.

    Article  CAS  Google Scholar 

  4. Chang, M.B. and Lee, C.C., Environ. Sci. Technol., 1995, vol. 29, no. 3, p. 181.

    Article  CAS  Google Scholar 

  5. Sano, N.Z., Nagamoto, T., Tamon, H., Suzuki, T., and Okazaki, M., Ind. Eng. Chem. Res., 1997, vol. 36, no. 3, p. 3783.

    Article  CAS  Google Scholar 

  6. Fitzimmons, C., Ismail, F., Whitehead, J.C., and Wilman, J.J., J. Phys. Chem. A, 2000, vol. 104, no. 6, p. 6032.

    Article  Google Scholar 

  7. Clothiaux, E.J., Koropchak, J.A., and Moore, R.R., Plasma Chem. Plasma Process., 1984, no. 4, p. 15.

  8. Fraser, M.E., Eaton, H.J., and Sheinson, R.S., Environ. Sci. Technol., 1985, vol. 19, no. 2, p. 946.

    Article  CAS  Google Scholar 

  9. Korobeinichev, O.P., Chernov, A.A., Sokolov, V.V., and Krasnoperov, L.N., Int. J. Chem. Kinet., 2002, vol. 34, no. 5, p. 331.

    Article  CAS  Google Scholar 

  10. Ohkubo, T., Kanazavwa, S., Nomoto, Y., Chang, J.-Sh., and Adachi, T., IEEE Trans. Ind. Appl., 1994, vol. 30, no. 4, p. 856.

    Article  CAS  Google Scholar 

  11. Chang, M.B., Kushner, M.J., and Rood, M.J., Environ. Sci. Technol., 1992, vol. 26, no. 1, p. 777.

    Article  CAS  Google Scholar 

  12. Penetrane, M.B., Hsiao, M.C., Merrit, B.T., and Vogtlin, G.E., IEEE Trans. Plasma Sci., 1995, vol. 23, no. 4, p. 679.

    Article  Google Scholar 

  13. Urashima, K., Chang, J.Sh., and Ito, T., IEEE Trans. Ind. Appl., 1997, vol. 33, no. 4, p. 879.

    Article  CAS  Google Scholar 

  14. Masuda, S., J. Appl. Chem., 1988, vol. 60, no. 5, p. 727.

    CAS  Google Scholar 

  15. Sun, W., Pashaie, B., Dhali, S.K., and Honea, F.I., J. Appl. Phys., 1996, vol. 79, no. 7, p. 3438.

    Article  CAS  Google Scholar 

  16. Onda, K., Kasuga, Y., Kato, K., Fujiwara, M., and Tanimoto, M., Energy Convers. Manage., 1997, vol. 38, p. 1377.

    Article  CAS  Google Scholar 

  17. Chang, M.B., Balbach, J.H., Rood, M.J., and Kushner, M.J., J. Appl. Phys., 1991, vol. 69, no. 8, p. 4409.

    Article  CAS  Google Scholar 

  18. Harano, A., Sadakata, M., and Sato, M., J. Chem. Eng. Jpn., 1991, vol. 24, no. 1, p. 100.

    Article  CAS  Google Scholar 

  19. Spiess, F.J., Chen, H., Brock, S.L., Suib, S.L., Hayashi, Y., and Matsumoto, H., J. Phys. Chem. A, 2000, vol. 104, no. 12, p. 11111.

    Article  CAS  Google Scholar 

  20. Remnev, G.E. and Pushkarev, A.I., IEEJ Trans. Fundam. Mater., 2004, vol. 124, no. 6, p. 483.

    Article  Google Scholar 

  21. Evans, D., Rosocha, L.A., Anderson, G.K., Coogan, J.J., and Kushner, M.J., J. Appl. Phys., 1993, vol. 74, no. 9, p. 5378.

    Article  CAS  Google Scholar 

  22. Scholtens, K.W., Messerer, B.M., Cappa, C.D., and Elrod, M.J., J. Phys. Chem. A, 1999, vol. 103, no. 4, p. 4378.

    Article  CAS  Google Scholar 

  23. Ranschaert, D.L., Schneider, N.J., and Elrod, M.J., J. Phys. Chem. A, 2000, vol. 104, no. 5, p. 5758.

    Article  CAS  Google Scholar 

  24. Li, W., Gibbs, G.V., and Oyama, S.T., J. Phys. Chem. A, 1998, vol. 120, no. 10, p. 9041.

    CAS  Google Scholar 

  25. DeMore, W.B., Sander, S.P., Golden, D.M., Hampson, R.F., Kurylo, M.J., Howard, C.J., Ravishankara, A.R., Kolb, C.E., and Molina, M.J., Chemical Kinetics and Photochemical Data for Use in Stratospheric Modeling, 1992, no. 10, p. 106.

  26. Kee, R.J., Rupley, F.M., and Miller, J.A., Chemkin-II: A FORTRAN Chemical Kinetics Package for the Analysis of Gas Phase Chemical Kinetics, Sandia Nat. Lab. Rep. SAND89-8009B UC-76, 1992.

  27. Konnov, A.A., 28th Symp. (Int.) on Combustion, Edinburgh, 2000, p. 317.

  28. Eliasson, H.M. and Kogelschatz, U., J. Phys. B: At. Mol. Phys., 1986, vol. 19, no. 2, p. 1241.

    Article  CAS  Google Scholar 

  29. Peyrous, R., Pignolet, P., and Held, B., J. Phys. D: Appl. Phys., 1989, vol. 22, no. 3, p. 1658.

    Article  CAS  Google Scholar 

  30. Penetrane, M.B., Hsiao, M.C., Bardsley, J.N., Merrit, B.T., Vogtlin, G.E., Wallman, P.H., Kuthi, A., Burkhart, C.P., and Bayless, J.R., Phys. Lett. A, 1995, vol. 209, no. 1, p. 69.

    Article  Google Scholar 

  31. Hughes, G., Radiation Chemistry, Oxford: Clarendon, 1973.

    Google Scholar 

  32. Penetrane, M.B., Hsiao, M.C., Merrit, B.T., Vogtlin, G.E., Wallman, P.H., Neiger, M., Wolf, O., Hammer, T., and Broer, S., Appl. Phys. Lett., 1996, vol. 68, no. 26, p. 3719.

    Article  Google Scholar 

  33. Lowke, J.J. and Morrow, R., Pure Appl. Chem., 1994, vol. 66, no. 6, p. 1287.

    Article  CAS  Google Scholar 

  34. Mallard, W.G., Westley, F., Herron, J.T., Hampson, R.F., and Frizzell, D., NIST Chemical Kinetics Database-NIST Standard Reference Database 17-2Q98, Gaithersburg, Md.: NIST, 1998.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Chernov.

Additional information

Original Russian Text © A.A. Chernov, O.P. Korobeinichev, C. Modenese, L.G. Krishtopa, L.N. Krasnoperov, 2010, published in Kinetika i Kataliz, 2010, Vol. 51, No. 3, pp. 347–357.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chernov, A.A., Korobeinichev, O.P., Modenese, C. et al. Kinetics, products, and mechanism of ethane destruction in corona discharge: Experiments and simulation. Kinet Catal 51, 327–336 (2010). https://doi.org/10.1134/S0023158410030018

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158410030018

Keywords

Navigation