Skip to main content
Log in

WO3/MO2 (M = Zr, Sn, Ti) heterogeneous acid catalysts: Synthesis, study, and use in cumene hydroperoxide decomposition

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

Thirty (5–40)% WO3/MO2 (M = Zr, Ti, Sn), heterogeneous acidic catalysts have been synthesized by two methods, specifically, via homogeneous acid solutions and from solutions brought to pH 9 with ammonia, both followed by calcination at 600–900°C. The catalysts have been characterized by IR spectroscopy and scanning electron microscopy, and their aqueous washings have been analyzed. Their acidity has been determined by the thermal analysis of samples containing adsorbed pyridine, and in terms of the proton affinity scale. Catalytic activities have been compared for cumene hydroperoxide (CHP) decomposition at 40°C in cumene and acetone. For all M, the catalysts are one type and contain W in strongly and weakly bound states, the latter being a polyoxometalate that can be washed off. Both tungstate phases are active in acid catalysis. Brønsted acid sites with a broad strength distribution have been found. The strongest of them are heteropolyacid protons. The catalysts 30% WO3/SnO2 and 20% WO3/ZrO2 (in acetone) and 10–20% WO3/TiO2 (in cumene) are the most active in CHP decomposition, and their activity is not related to their total acidity. Phases containing W6+ that form during the high-temperature synthesis are responsible for the high acidity, and additional protons that may appear owing to W6+ reduction can play only a minor role.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tanabe, K. and Holderich, W.F., Appl. Catal., A, 1999, vol. 181, no. 2, p. 399.

    Article  CAS  Google Scholar 

  2. Weitkamp, J. and Traa, Y., Catal. Today, 1999, vol. 49, p. 193.

    Article  CAS  Google Scholar 

  3. Aliev, E.A. and Adzhamov, K.Yu., Azerb. Khim. Zh., 1984, no. 5, p. 6.

  4. Arata, K. and Hino, M., Proc. 10th Int. Congr. on Catalysis, Budapest, 1992.

  5. Vaudagna, S.R., Canovese, S.A., Comelli, R.A., and Figoli, N.S., Appl. Catal., A 1998, vol. 168, no. 1, p. 93.

    Article  CAS  Google Scholar 

  6. Barton, D.G., Soled, S.L., and Iglesia, E., Top. Catal., 1998, vol. 6, p. 87.

    Article  CAS  Google Scholar 

  7. Maksimov, G.M., Fedotov, M.A., Bogdanov, S.V., et al., J. Mol. Catal., A: Chem., 2000, vol. 158, no. 1, p. 435.

    Article  CAS  Google Scholar 

  8. Gutierrez-Alejandre, A., Castillo, P., Ramirez, J., et al., Appl. Catal., A, 2001, vol. 216, p. 181.

    Article  CAS  Google Scholar 

  9. Greish, A.A., Demygin, S.S., and Kustov, L.M., Katal. Prom-sti, 2002, no. 6, p. 27.

  10. Kuba, S., Lukinskas, P., Grasselli, R.K., et al., J. Catal., 2003, vol. 216, nos. 1–2, p. 353.

    Article  CAS  Google Scholar 

  11. Chu, W., Echizen, T., Kamiya, Y., and Okuhara, T., Appl. Catal., A, 2004, vol. 259, no. 2, p. 199.

    Article  CAS  Google Scholar 

  12. Kruzhalov, B.D. and Golovanenko, B.I., Sovmestnoe poluchenie fenola i atsetona (Simultaneous Preparation of Phenol and Acetone), Moscow: Goskhimizdat, 1963.

    Google Scholar 

  13. Maksimov, G.M., Maksimovskaya, R.I., and Kozhevnikov, I.V., Zh. Neorg. Khim., 1994, vol. 39, no. 4, p. 623.

    CAS  Google Scholar 

  14. Maksimov, G.M., Paukshtis, E.A., Budneva, A.A., et al., Izv. Akad. Nauk, Ser. Khim., 2001, no. 4, p. 563.

  15. Eibl, S., Gates, B.C., and Knoezinger, H., Langmuir, 2001, vol. 17, no. 1, p. 107.

    Article  CAS  Google Scholar 

  16. Ferraris, G., DeRossi, S., Gazzoli, D., et al., Appl. Catal., A, 2003, vol. 240, p. 119.

    Article  CAS  Google Scholar 

  17. Pope, M.T., Heteropoly and Isopoly Oxometalates, Berlin: Springer, 1983.

    Google Scholar 

  18. Maksimov, G.M., Usp. Khim., 1995, vol. 64, no. 5, p. 480.

    CAS  Google Scholar 

  19. Boyse, R.A. and Ko, E.J., J. Catal., 1997, vol. 171, no. 1, p. 191.

    Article  CAS  Google Scholar 

  20. Kazanskii, L.P. and Golubev, A.M., Khimiya soedinenii Mo(VI) i W(VI) (Chemistry of Mo(VI) and W(VI) Compounds), Novosibirsk, 1979.

  21. Ramis, G., Busca, G., Cristiani, C., et al., Langmuir, 1992, vol. 8, no. 7, p. 1744.

    Article  CAS  Google Scholar 

  22. Armendariz, H., Cortes, M.A., Hernandez, I., et al., J. Mater. Chem., 2003, vol. 13, no. 1, p. 143.

    Article  CAS  Google Scholar 

  23. Triwahyono, S., Yamada, T., and Hattori, H., Appl. Catal., A, 2003, vol. 242, no. 1, p. 101.

    Article  CAS  Google Scholar 

  24. Gorte, R.J., Catal. Lett., 1999, vol. 62, no. 1, p. 1.

    Article  CAS  Google Scholar 

  25. Auroux, A., Top. Catal., 2002, vol. 19, nos. 3–4, p. 205.

    Article  CAS  Google Scholar 

  26. Arena, F., Dario, R., and Parmaliana, A., Appl. Catal., A, 1998, vol. 170, no. 1, p. 127.

    Article  CAS  Google Scholar 

  27. Srinivasan, R., Keogh, R.A., and Davis, B.H., Catal. Lett., 1996, vol. 36, nos. 1–2, p. 51.

    Article  CAS  Google Scholar 

  28. Cai, H., Du, D., Ni, J., et al., Thermochim. Acta, 1997, vol. 292, nos. 1–2, p. 45.

    CAS  Google Scholar 

  29. Farcusiu, D., Catal. lett, 2001, vol. 71, nos. 1–2, p. 95.

    Article  Google Scholar 

  30. Vartuli, J.C., Santiesteban, J.G., Traverso, P., et al., J. Catal., 1999, vol. 187, no. 1, p. 131.

    Article  CAS  Google Scholar 

  31. Kuznetsova, L.I., Maksimov, G.M., and Likholobov, V.A., Kinet. Katal., 1999, vol. 40, no. 5, p. 688 [Kinet. Catal. (Engl. Transl.), vol. 40, no. 5, p. 622].

    Google Scholar 

  32. Kabachnik, M.I., Usp. Khim., 1979, vol. 48, no. 9, p. 1523.

    Google Scholar 

  33. Farcusiu, D. and Hancu, D., Catal. Lett., 1998, vol. 53, nos. 1–2, p. 3.

    Google Scholar 

  34. Kazansky, V.B., Catal. Today, 2002, vol. 73, nos. 1–2, p. 127.

    Article  CAS  Google Scholar 

  35. Zakoshanskii, V.M., Katal. Prom-sti, 2004, no. 5, p. 3.

  36. Zecchina, A., Lamberti, C., and Bordiga, S., Catal. Today, 1998, vol. 41, nos. 1–3, p. 169.

    Article  CAS  Google Scholar 

  37. Hajiivanov, K., Lukinskas, P., and Knozinger, H., Catal. Lett., 2002, vol. 82, nos. 1–2, p. 73.

    Article  Google Scholar 

  38. Baertsch, C.D., Komala, K.T., Chua, Y.H., and Iglesia, E., J. Catal., 2002, vol. 205, no. 1, p. 44.

    Article  CAS  Google Scholar 

  39. Shimizu, K., Venkatraman, T.N., and Song, W., Appl. Catal., A, 2002, vol. 225, nos. 1–2, p. 33.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © G.M. Maksimov, G.S. Litvak, A.A. Budneva, E.A. Paukshtis, A.N. Salanov, V.A. Likholobov, 2006, published in Kinetika i Kataliz, 2006, Vol. 47, No. 4, pp. 581–588.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maksimov, G.M., Litvak, G.S., Budneva, A.A. et al. WO3/MO2 (M = Zr, Sn, Ti) heterogeneous acid catalysts: Synthesis, study, and use in cumene hydroperoxide decomposition. Kinet Catal 47, 564–571 (2006). https://doi.org/10.1134/S0023158406040124

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158406040124

Keywords

Navigation