Skip to main content
Log in

Nature of the Pt–Os Chemical Bond in Nanoalloys

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

The electronic structure of Os0.5Pt0.5 bimetallic nanoalloys is studied by X-ray photoelectron spectroscopy and X-ray absorption spectroscopy. The electronic population on the atoms of these alloys is determined from the obtained experimental data. It is shown that the alloy formation is accompanied by electron transfer from Os atoms to Pt atoms, while the sign and magnitude of the chemical shift are largely determined by the Madelung potential. The shape of the XPS spectra of core lines and the valence band indicate that the local density of states increases on the Os atoms near the Fermi level. Prospects of using the nanoalloys in catalytic reactions are discussed by analyzing the valence d-band parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

REFERENCES

  1. D. Wu, K. Kusada, T. Yamamoto, T. Toriyama, S. Matsumura, S. Kawaguchi, Y. Kubota, and H. Kitagawa. Platinum-group-metal high-entropy-alloy nanoparticles. J. Am. Chem. Soc., 2020, 142(32), 13833-13838. https://doi.org/10.1021/jacs.0c04807

    Article  CAS  PubMed  Google Scholar 

  2. K. Kusada, D. Wu, and H. Kitagawa. New aspects of platinum group metal-based solid-solution alloy nanoparticles: Binary to high-entropy alloys. Chem. - Eur. J., 2020, 26(23), 5105-5130. https://doi.org/10.1002/chem.201903928

    Article  CAS  Google Scholar 

  3. K. V. Yusenko, S. Riva, P. A. Carvalho, M. V. Yusenko, S. Arnaboldi, A. S. Sukhikh, M. Hanfland, and S. A. Gromilov. First hexagonal close packed high-entropy alloy with outstanding stability under extreme conditions and electrocatalytic activity for methanol oxidation. Scr. Mater., 2017, 138, 22-27. https://doi.org/10.1016/j.scriptamat.2017.05.022

    Article  CAS  Google Scholar 

  4. H.-J. Qiu, G. Fang, Y. Wen, P. Liu, G. Xie, X. Liu, and S. Sun. Nanoporous high-entropy alloys for highly stable and efficient catalysts. J. Mater. Chem. A, 2019, 7(11), 6499-6506. https://doi.org/10.1039/c9ta00505f

    Article  CAS  Google Scholar 

  5. S. Li, X. Tang, H. Jia, H. Li, G. Xie, X. Liu, X. Lin, and H.-J. Qiu. Nanoporous high-entropy alloys with low Pt loadings for high-performance electrochemical oxygen reduction. J. Catal., 2020, 383, 164-171. https://doi.org/10.1016/j.jcat.2020.01.024

    Article  CAS  Google Scholar 

  6. J. K. Pedersen, T. A. A. Batchelor, A. Bagger, and J. Rossmeisl. High-entropy alloys as catalysts for the CO2 and CO reduction reactions. ACS Catal., 2020, 10(3), 2169-2176. https://doi.org/10.1021/acscatal.9b04343

    Article  CAS  Google Scholar 

  7. S. Nellaiappan, N. K. Katiyar, R. Kumar, A. Parui, K. D. Malviya, K. G. Pradeep, A. K. Singh, S. Sharma, C. S. Tiwary, and K. Biswas. High-entropy alloys as catalysts for the CO2 and CO reduction reactions: Experimental realization. ACS Catal., 2020, 10(6), 3658-3663. https://doi.org/10.1021/acscatal.9b04302

    Article  CAS  Google Scholar 

  8. S. Gao, S. Hao, Z. Huang, Y. Yuan, S. Han, L. Lei, X. Zhang, R. Shahbazian-Yassar, and J. Lu. Synthesis of high-entropy alloy nanoparticles on supports by the fast moving bed pyrolysis. Nat. Commun., 2020, 11(1), 2016. https://doi.org/10.1038/s41467-020-15934-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. V. A. Mints, J. K. Pedersen, A. Bagger, J. Quinson, A. S. Anker, K. M. Ø. Jensen, J. Rossmeisl, and M. Arenz. Exploring the composition space of high-entropy alloy nanoparticles for the electrocatalytic H2/CO oxidation with bayesian optimization. ACS Catal., 2022, 12(18), 11263-11271. https://doi.org/10.1021/acscatal.2c02563

    Article  CAS  Google Scholar 

  10. M. Bondesgaard, N. L. N. Broge, A. Mamakhel, M. Bremholm, and B. B. Iversen. General solvothermal synthesis method for complete solubility range bimetallic and high-entropy alloy nanocatalysts. Adv. Funct. Mater., 2019, 29(50), 1905933. https://doi.org/10.1002/adfm.201905933

    Article  Google Scholar 

  11. D. Wu, K. Kusada, T. Yamamoto, T. Toriyama, S. Matsumura, I. Gueye, O. Seo, J. Kim, S. Hiroi, O. Sakata, S. Kawaguchi, Y. Kubota, and H. Kitagawa. On the electronic structure and hydrogen evolution reaction activity of platinum group metal-based high-entropy-alloy nanoparticles. Chem. Sci., 2020, 11(47), 12731-12736. https://doi.org/10.1039/d0sc02351e

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. D. Wu, K. Kusada, Y. Nanba, M. Koyama, T. Yamamoto, T. Toriyama, S. Matsumura, O. Seo, I. Gueye, J. Kim, L. S. Rosantha Kumara, O. Sakata, S. Kawaguchi, Y. Kubota, and H. Kitagawa. Noble-metal high-entropy-alloy nanoparticles: Atomic-level insight into the electronic structure. J. Am. Chem. Soc., 2022, 144(8), 3365-3369. https://doi.org/10.1021/jacs.1c13616

    Article  CAS  PubMed  Google Scholar 

  13. R. K. Pittkowski, C. M. Clausen, Q. Chen, D. Stoian, W. van Beek, J. Bucher, R. L. Welten, N. Schlegel, J. K. Mathiesen, T. M. Nielsen, J. Du, A. W. Rosenkranz, E. D. Bøjesen, J. Rossmeisl, K. M. Ø. Jensen, and M. Arenz. The more the better: on the formation of single-phase high entropy alloy nanoparticles as catalysts for the oxygen reduction reaction. EES Catal., 2023, 1(6), 950-960. https://doi.org/10.1039/d3ey00201b

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. X. Zhang, H. Li, J. Yang, Y. Lei, C. Wang, J. Wang, Y. Tang, and Z. Mao. Recent advances in Pt-based electrocatalysts for PEMFCs. RSC Adv., 2021, 11(22), 13316-13328. https://doi.org/10.1039/d0ra05468b

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Y. Yang, T. Shen, and X. Xu. Towards the rational design of Pt-based alloy catalysts for the low-temperature water-gas shift reaction: From extended surfaces to single atom alloys. Chem. Sci., 2022, 13(21), 6385-6396. https://doi.org/10.1039/d2sc01729f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Z. Liu, Z. Zhao, B. Peng, X. Duan, and Y. Huang. Beyond extended surfaces: Understanding the oxygen reduction reaction on nanocatalysts. J. Am. Chem. Soc., 2020, 142(42), 17812-17827. https://doi.org/10.1021/jacs.0c07696

    Article  CAS  PubMed  Google Scholar 

  17. N. Danielis, L. Vega, G. Fronzoni, M. Stener, A. Bruix, and K. M. Neyman. AgPd, AuPd, and AuPt nanoalloys with Ag- or Au-rich compositions: Modeling chemical ordering and optical properties. J. Phys. Chem. C, 2021, 125(31), 17372-17384. https://doi.org/10.1021/acs.jpcc.1c04222

    Article  CAS  Google Scholar 

  18. V. Coviello, D. Forrer, and V. Amendola. Recent developments in plasmonic alloy nanoparticles: Synthesis, modelling, properties and applications. ChemPhysChem, 2022, 23(21). https://doi.org/10.1002/cphc.202200136

    Article  PubMed  PubMed Central  Google Scholar 

  19. Z. Zhao, A. Fisher, Y. Shen, and D. Cheng. Magnetic properties of Pt-based nanoalloys: A critical review. J. Clust. Sci., 2016, 27(3), 817-843. https://doi.org/10.1007/s10876-016-0983-1

    Article  CAS  Google Scholar 

  20. M. Atwan, D. Northwood, and E. Gyenge. Evaluation of colloidal Os and Os-alloys (Os–Sn, Os–Mo and Os–V) for electrocatalysis of methanol and borohydride oxidation. Int. J. Hydrogen Energy, 2005, 30(12), 1323-1331. https://doi.org/10.1016/j.ijhydene.2005.04.010

    Article  CAS  Google Scholar 

  21. A. Egeberg, C. Dietrich, C. Kind, R. Popescu, D. Gerthsen, S. Behrens, and C. Feldmann. Bimetallic nickel-iridium and nickel-osmium alloy nanoparticles and their catalytic performance in hydrogenation reactions. ChemCatChem, 2017, 9(18), 3534-3543. https://doi.org/10.1002/cctc.201700168

    Article  CAS  Google Scholar 

  22. D. Cao, H. Xu, H. Li, C. Feng, J. Zeng, and D. Cheng. Volcano-type relationship between oxidation states and catalytic activity of single-atom catalysts towards hydrogen evolution. Nat. Commun., 2022, 13(1), 5843. https://doi.org/10.1038/s41467-022-33589-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. I. V. Korol′kov, A. I. Gubanov, K. V. Yusenko, I. A. Baidina, and S. A. Gromilov. Synthesis of non-equilibrium PtxOs1–x solid solutions. Crystal structure of [Pt(NH3)4][OsCl6]. J. Struct. Chem., 2007, 48(3), 486-493. https://doi.org/10.1007/s10947-007-0073-1

    Article  CAS  Google Scholar 

  24. S. A. Gromilov, T. V. D′yachkova, A. P. Tyutyunnik, Y. G. Zainulin, A. I. Gubanov, and S. V. Cherepanova. The product of thermobaric treatment of Pt0.25Os0.75. J. Struct. Chem., 2008, 49(2), 382-385. https://doi.org/10.1007/s10947-008-0138-9

    Article  CAS  Google Scholar 

  25. S. A. Gromilov, Y. V. Shubin, A. I. Gubanov, E. A. Maksimovskii, and S. V. Korenev. X-ray study of the thermolysis products of (NH4)2[OsCl6]x[PtCl6]1–x. J. Struct. Chem., 2009, 50(6), 1121-1125. https://doi.org/10.1007/s10947-009-0164-2

    Article  CAS  Google Scholar 

  26. V. V. Zvereva, I. P. Asanov, K. V. Yusenko, A. V. Zadesenec, P. E. Plyusnin, E. Y. Gerasimov, E. A. Maksimovskiy, S. V. Korenev, and T. I. Asanova. Local atomic and electronic structure of Pt–Os nanoplates and nanofibers derived from the single-source precursor (NH4)2[Pt0.5Os0.5Cl6]. J. Nanoparticle Res., 2022, 24(1), 5. https://doi.org/10.1007/s11051-021-05378-z

    Article  CAS  Google Scholar 

  27. T. I. Asanova, I. P. Asanov, K. V. Yusenko, C. , E. Y. Gerasimov, A. V. Zadesenets, and S. V. Korenev. Time-resolved study of Pd–Os and Pt–Os nanoalloys formation through thermal decomposition of [Pd(NH3)4][OsCl6] and [Pt(NH3)4][OsCl6] complex salts. Mater. Res. Bull., 2021, 144, 111511. https://doi.org/10.1016/j.materresbull.2021.111511

    Article  CAS  Google Scholar 

  28. T. I. Asanova, I. P. Asanov, M.-G. Kim, and S. V. Korenev. In situ X-ray spectroscopic investigation of thermal decomposition of double complex salt [Pt(NH3)4][OsCl6]. J. Struct. Chem., 2017, 58(5), 901-910. https://doi.org/10.1134/s0022476617050079

    Article  CAS  Google Scholar 

  29. X. Teng, M. Feygenson, Q. Wang, J. He, W. Du, A. I. Frenkel, W. Han, and M. Aronson. Electronic and magnetic properties of ultrathin Au/Pt nanowires. Nano Lett., 2009, 9(9), 3177-3184. https://doi.org/10.1021/nl9013716

    Article  CAS  PubMed  Google Scholar 

  30. N. Schweitzer, H. Xin, E. Nikolla, J. T. Miller, and S. Linic. Establishing relationships between the geometric structure and chemical reactivity of alloy catalysts based on their measured electronic structure. Top. Catal., 2010, 53(5/6), 348-356. https://doi.org/10.1007/s11244-010-9448-1

    Article  CAS  Google Scholar 

  31. A. Herrera-Gomez. Uncertainties in photoemission peak fitting accounting for the covariance with background parameters. J. Vac. Sci. Technol., A, 2020, 38(3). https://doi.org/10.1116/1.5143132

    Article  Google Scholar 

  32. N. Fairley, V. Fernandez, M. Richard-Plouet, C. Guillot-Deudon, J. Walton, E. Smith, D. Flahaut, M. Greiner, M. Biesinger, S. Tougaard, D. Morgan, and J. Baltrusaitis. Systematic and collaborative approach to problem solving using X-ray photoelectron spectroscopy. Appl. Surf. Sci. Adv., 2021, 5, 100112. https://doi.org/10.1016/j.apsadv.2021.100112

    Article  Google Scholar 

  33. S. Doniach and M. Sunjic. Many-electron singularity in X-ray photoemission and X-ray line spectra from metals. J. Phys. C: Solid State Phys., 1970, 3(2), 285-291. https://doi.org/10.1088/0022-3719/3/2/010

    Article  CAS  Google Scholar 

  34. V. Briois, C. , S. Belin, L. Barthe, T. Moreno, V. Pinty, A. Carcy, R. Girardot, and E. Fonda. ROCK: the new Quick-EXAFS beamline at SOLEIL. J. Phys. Conf. Ser., 2016, 712, 012149. https://doi.org/10.1088/1742-6596/712/1/012149

    Article  CAS  Google Scholar 

  35. C. Lesage, E. Devers, C. Legens, G. Fernandes, O. Roudenko, and V. Briois. High pressure cell for edge jumping X-ray absorption spectroscopy: Applications to industrial liquid sulfidation of hydrotreatment catalysts. Catal. Today, 2019, 336, 63-73. https://doi.org/10.1016/j.cattod.2019.01.081

    Article  CAS  Google Scholar 

  36. J. Stöhr. NEXAFS Spectroscopy. Berlin, Heidelberg, Germany: Springer, 1992.

  37. J. L. Campbell and T. Papp. Widths of the atomic KN7 levels. At. Data Nucl. Data Tables, 2001, 77(1), 1-56. https://doi.org/10.1006/adnd.2000.0848

    Article  CAS  Google Scholar 

  38. G. Moretti. Auger parameter and Wagner plot in the characterization of chemical states by X-ray photoelectron spectroscopy: a review. J. Electron Spectros. Relat. Phenomena, 1998, 95(2/3), 95-144. https://doi.org/10.1016/s0368-2048(98)00249-7

    Article  CAS  Google Scholar 

  39. T. Darrah Thomas and P. Weightman. Valence electronic structure of AuZn and AuMg alloys derived from a new way of analyzing Auger-parameter shifts. Phys. Rev. B, 1986, 33(8), 5406-5413. https://doi.org/10.1103/physrevb.33.5406

    Article  CAS  Google Scholar 

  40. J. D. Rogers, V. S. Sundaram, G. G. Kleiman, S. G. C. Castro, R. A. Douglas, and A. C. Peterlevitz. High resolution study of the M45N67N67 and M45N45N67 Auger transitions in the 5d series. J. Phys. F: Met. Phys., 1982, 12(9), 2097-2102. https://doi.org/10.1088/0305-4608/12/9/027

    Article  CAS  Google Scholar 

  41. Y. Goldstein, A. Many, S. Z. Weisz, M. Gomez, O. Resto, and M. H. Farias. Yields, sensitivities and natural line shapes of high-energy Auger lines: Ta, W, Pt, Au, Pb and Bi. J. Electron Spectros. Relat. Phenomena, 1994, 67(3), 511-518. https://doi.org/10.1016/0368-2048(93)02029-l

    Article  CAS  Google Scholar 

  42. I. Chorkendorff, J. Onsgaard, H. Aksela, and S. Aksela. 4p and 4d Auger spectra of atomic and solid Yb. Phys. Rev. B, 1983, 27(2), 945-954. https://doi.org/10.1103/physrevb.27.945

    Article  CAS  Google Scholar 

  43. G. G. Kleiman and R. Landers. Energy shifts and electronic structure changes in alloys: an unfulfilled promise? J. Electron Spectros. Relat. Phenomena, 1998, 88-91, 435-440. https://doi.org/10.1016/s0368-2048(97)00195-3

    Article  CAS  Google Scholar 

  44. R. J. Cole, P. Weightman, and J. A. D. Matthew. Relaxation energy and Auger parameter shifts in noble and transition metal alloys. J. Electron Spectros. Relat. Phenomena, 2003, 133(1-3), 47-53. https://doi.org/10.1016/j.elspec.2003.08.004

    Article  CAS  Google Scholar 

  45. J. B. Mann. Atomic structure calculations I: Report No. LASL-3690. Los Alamos, New Mexico, USA. Los Alamos Scientific Laboratory, 1967.

  46. M. D. Jackson, R. J. Cole, N. J. Brooks, and P. Weightman. Potential parameters for analysis of chemical shifts for the elements lithium to argon. J. Electron Spectros. Relat. Phenomena, 1995, 72, 261-266. https://doi.org/10.1016/0368-2048(94)02323-9

    Article  CAS  Google Scholar 

  47. B. Qi, I. Perez, P. H. Ansari, F. Lu, and M. Croft. L2 and L3 measurements of transition-metal 5d orbital occupancy, spin-orbit effects, and chemical bonding. Phys. Rev. B, 1987, 36(5), 2972-2975. https://doi.org/10.1103/physrevb.36.2972

    Article  CAS  Google Scholar 

  48. Y. Jeon, J. Chen, and M. Croft. X-ray-absorption studies of the d-orbital occupancies of selected 4d/5d transition metals compounded with group-III/IV ligands. Phys. Rev. B, 1994, 50(10), 6555-6563. https://doi.org/10.1103/physrevb.50.6555

    Article  CAS  Google Scholar 

  49. J. Chrzanowski and B. Bieg. Precise, semi-empirical equation for the work function. Appl. Surf. Sci., 2018, 461, 83-87. https://doi.org/10.1016/j.apsusc.2018.05.120

    Article  CAS  Google Scholar 

  50. J. Chrzanowski, Y. Kravtsov, and B. Bieg. Application of the work function to study the percentage composition of aluminum alloys. Sci. J. Maritime Univ. Szeczin, 2014, 38(110), 27-31.

  51. P. D. Swartzentruber, M. J. Detisch, and T. J. Balk. Composition and work function relationship in Os–Ru–W ternary alloys. J. Vac. Sci. Technol., A, 2015, 33(2). https://doi.org/10.1116/1.4905499

    Article  Google Scholar 

  52. Periodic Table of Elements (EnvironmentalChemistry.com), https://environmentalchemistry.com/yogi/periodic/.

  53. R. Magri, S.-H. Wei, and A. Zunger. Ground-state structures and the random-state energy of the Madelung lattice. Phys. Rev. B, 1990, 42(17), 11388-11391. https://doi.org/10.1103/physrevb.42.11388

    Article  CAS  Google Scholar 

  54. R. J. Cole and P. Weightman. Electrostatics in disordered alloys. J. Phys. Condens. Matter, 1998, 10(25), 5679-5695. https://doi.org/10.1088/0953-8984/10/25/017

    Article  CAS  Google Scholar 

  55. R. J. Cole and P. Weightman. Disorder broadening of core levels: Insights into alloy electronic structure. J. Electron Spectros. Relat. Phenomena, 2010, 178/179, 112-122. https://doi.org/10.1016/j.elspec.2009.09.005

    Article  CAS  Google Scholar 

  56. R. D. Stoker, M. Szmigiel, N. J. Miller, and R. J. Cole. Disorder broadening of alloy Auger spectra. J. Electron Spectros. Relat. Phenomena, 2008, 162(3), 127-133. https://doi.org/10.1016/j.elspec.2007.11.004

    Article  CAS  Google Scholar 

  57. T. Marten, W. Olovsson, S. I. Simak, and I. A. Abrikosov. Ab initio study of disorder broadening of core photoemission spectra in random Cu–Pd and Ag–Pd alloys. Phys. Rev. B, 2005, 72(5), 054210. https://doi.org/10.1103/physrevb.72.054210

    Article  Google Scholar 

  58. T. Marten, I. A. Abrikosov, W. Olovsson, B. Johansson, R. J. Cole, G. Beamson, S. R. Haines, and P. Weightman. Suppression of disorder broadening of core-level photoelectron lines in CuAu alloys by inhomogeneous lattice distortion. Phys. Rev. B, 2009, 79(1), 012201. https://doi.org/10.1103/physrevb.79.012201

    Article  Google Scholar 

  59. W. Olovsson, C. Göransson, L. V. Pourovskii, B. Johansson, and I. A. Abrikosov. Core-level shifts in fcc random alloys: A first-principles approach. Phys. Rev. B, 2005, 72(6), 064203. https://doi.org/10.1103/physrevb.72.064203

    Article  Google Scholar 

  60. I. A. Abrikosov, W. Olovsson, and B. Johansson. Valence-band hybridization and core level shifts in random Ag–Pd alloys. Phys. Rev. Lett., 2001, 87(17), 176403. https://doi.org/10.1103/physrevlett.87.176403

    Article  CAS  PubMed  Google Scholar 

  61. S. Hüfner, G. K. Wertheim, and J. H. Wernick. XPS core line asymmetries in metals. Solid State Commun., 1975, 17(4), 417-422. https://doi.org/10.1016/0038-1098(75)90468-8

    Article  Google Scholar 

  62. V. V. Nemoshkalenno, V. N. Antonov, V. N. Antonov, W. John, H. Wonn, and P. Ziesche. Electronic structure and soft X-ray emission spectra of 5d transition metals. Phys. Status Solidi, 1982, 111(1), 11-52. https://doi.org/10.1002/pssb.2221110103

    Article  CAS  Google Scholar 

  63. G. K. Wertheim and P. H. Citrin. Fermi surface excitations in X-ray photoemission line shapes from metals. In: Photoemission in Solids I: Topics in Applied Physics, Vol. 26 / Eds. M. Cardona and L. Ley. Berlin/Heidelberg, Germany: Springer, 1978, 197-236. https://doi.org/10.1007/3540086854_5

    Chapter  Google Scholar 

  64. N. Mårtensson, R. Nyholm, H. Calén, J. Hedman, and B. Johansson. Electron-spectroscopic studies of the CuxPd1–x alloy system: Chemical-shift effects and valence-electron spectra. Phys. Rev. B, 1981, 24(4), 1725-1738. https://doi.org/10.1103/physrevb.24.1725

    Article  Google Scholar 

  65. N. J. Shevchik and D. Bloch. XPS d-bands and core levels of Pt–Ni alloys. J. Phys. F: Met. Phys., 1977, 7(3), 543-550. https://doi.org/10.1088/0305-4608/7/3/024

    Article  CAS  Google Scholar 

  66. C. R. O′Connor, M. A. van Spronsen, M. Karatok, J. Boscoboinik, C. M. Friend, and M. M. Montemore. Predicting X-ray photoelectron peak shapes: The effect of electronic structure. J. Phys. Chem. C, 2021, 125(19), 10685-10692. https://doi.org/10.1021/acs.jpcc.1c01450

    Article  CAS  Google Scholar 

  67. J. H. Scofield. Hartree-Slater subshell photoionization cross-sections at 1254 and 1487 eV. J. Electron Spectros. Relat. Phenomena, 1976, 8(2), 129-137. https://doi.org/10.1016/0368-2048(76)80015-1

    Article  CAS  Google Scholar 

  68. T. Hofmann, T. H. Yu, M. Folse, L. Weinhardt, M. Bär, Y. Zhang, B. V. Merinov, D. J. Myers, W. A. Goddard, and C. Heske. Using photoelectron spectroscopy and quantum mechanics to determine d-band energies of metals for catalytic applications. J. Phys. Chem. C, 2012, 116(45), 24016-24026. https://doi.org/10.1021/jp303276z

    Article  CAS  Google Scholar 

  69. L. F. Mattheiss and R. E. Dietz. Relativistic tight-binding calculation of core-valence transitions in Pt and Au. Phys. Rev. B, 1980, 22(4), 1663-1676. https://doi.org/10.1103/physrevb.22.1663

    Article  CAS  Google Scholar 

  70. O. Jepsen, O. K. Andersen, and A. R. Mackintosh. Electronic structure of hcp transition metals. Phys. Rev. B, 1975, 12(8), 3084-3103. https://doi.org/10.1103/physrevb.12.3084

    Article  CAS  Google Scholar 

  71. R. Nilsson, A. Berndtsson, N. Mårtensson, R. Nyholm, and J. Hedman. The valence band of Os studied by electron spectroscopy. Phys. Status Solidi, 1976, 75(1), 197-203. https://doi.org/10.1002/pssb.2220750120

    Article  CAS  Google Scholar 

  72. J. C. Fuggle, F. U. Hillebrecht, R. Zeller, Z. Zołnierek, P. A. Bennett, and C. Freiburg. Electronic structure of Ni and Pd alloys. I. X-ray photoelectron spectroscopy of the valence bands. Phys. Rev. B, 1983, 27(4), 2145-2178. https://doi.org/10.1103/physrevb.27.2145

    Article  CAS  Google Scholar 

  73. I. Moysan, V. Paul-Boncour, S. Thiébaut, E. Sciora, J. M. Fournier, R. Cortes, S. Bourgeois, and A. Percheron-Guégan. Pd–Pt alloys: Correlation between electronic structure and hydrogenation properties. J. Alloys Compd., 2001, 322(1/2), 14-20. https://doi.org/10.1016/s0925-8388(01)01202-6

    Article  CAS  Google Scholar 

  74. P. W. Anderson. Localized magnetic states in metals. Phys. Rev., 1961, 124(1), 41-53. https://doi.org/10.1103/physrev.124.41

    Article  CAS  Google Scholar 

  75. O. Bunău and Y. Joly. Self-consistent aspects of X-ray absorption calculations. J. Phys. Condens. Matter, 2009, 21(34), 345501. https://doi.org/10.1088/0953-8984/21/34/345501

    Article  CAS  PubMed  Google Scholar 

  76. J. A. Horsley. Relationship between the area of L2,3 X-ray absorption edge resonances and the d orbital occupancy in compounds of platinum and iridium. J. Chem. Phys., 1982, 76(3), 1451-1458. https://doi.org/10.1063/1.443105

    Article  CAS  Google Scholar 

  77. D.-Y. Cho, J. Park, J. Yu, and J.-G. Park. X-ray absorption spectroscopy studies of spin–orbit coupling in 5d transition metal oxides. J. Phys. Condens. Matter, 2012, 24(5), 055503. https://doi.org/10.1088/0953-8984/24/5/055503

    Article  CAS  PubMed  Google Scholar 

  78. J. P. Clancy, N. Chen, C. Y. Kim, W. F. Chen, K. W. Plumb, B. C. Jeon, T. W. Noh, and Y.-J. Kim. Spin-orbit coupling in iridium-based 5d compounds probed by X-ray absorption spectroscopy. Phys. Rev. B, 2012, 86(19), 195131. https://doi.org/10.1103/physrevb.86.195131

    Article  Google Scholar 

  79. D. H. Kiem, J.-H. Sim, H. Yoon, and M. J. Han. First-principles-based calculation of branching ratio for 5d, 4d, and 3d transition metal systems. J. Phys. Condens. Matter, 2020, 32(24), 245501. https://doi.org/10.1088/1361-648x/ab786f

    Article  CAS  PubMed  Google Scholar 

  80. S. V. Vonsovskii. Magnetizm (Magnetism). Moscow, Russia: Nauka, 1971.

  81. D. Wang, X. Cui, Q. Xiao, Y. Hu, Z. Wang, Y. M. Yiu, and T. K. Sham. Electronic behaviour of Au-Pt alloys and the binding energy shift anomaly in Au bimetallics- X-ray spectroscopy studies. AIP Adv., 2018, 8(6). https://doi.org/10.1063/1.5027251

    Article  PubMed  PubMed Central  Google Scholar 

  82. A. Nilsson, L. G. M. Pettersson, B. Hammer, T. Bligaard, C. H. Christensen, and J. K. Nørskov. The electronic structure effect in heterogeneous catalysis. Catal. Lett., 2005, 100(3/4), 111-114. https://doi.org/10.1007/s10562-004-3434-9

    Article  CAS  Google Scholar 

  83. T. Anniyev, H. Ogasawara, M. P. Ljungberg, K. T. Wikfeldt, J. B. MacNaughton, L.-Å. Näslund, U. Bergmann, S. Koh, P. Strasser, L. G. M. Pettersson, and A. Nilsson. Complementarity between high-energy photoelectron and L-edge spectroscopy for probing the electronic structure of 5d transition metal catalysts. Phys. Chem. Chem. Phys., 2010, 12(21), 5694. https://doi.org/10.1039/b926414k

    Article  CAS  PubMed  Google Scholar 

  84. P. Strasser, S. Koh, T. Anniyev, J. Greeley, K. More, C. Yu, Z. Liu, S. Kaya, D. Nordlund, H. Ogasawara, M. F. Toney, and A. Nilsson. Lattice-strain control of the activity in dealloyed core–shell fuel cell catalysts. Nat. Chem., 2010, 2(6), 454-460. https://doi.org/10.1038/nchem.623

    Article  CAS  Google Scholar 

  85. M. P. Hyman and J. W. Medlin. Effects of electronic structure modifications on the adsorption of oxygen reduction reaction intermediates on model Pt(111)-alloy surfaces. J. Phys. Chem. C, 2007, 111(45), 17052-17060. https://doi.org/10.1021/jp075108g

    Article  CAS  Google Scholar 

  86. Z. Wang and P. Hu. Formulating the bonding contribution equation in heterogeneous catalysis: A quantitative description between the surface structure and adsorption energy. Phys. Chem. Chem. Phys., 2017, 19(7), 5063-5069. https://doi.org/10.1039/c6cp08493a

    Article  CAS  PubMed  Google Scholar 

  87. M. T. Greiner, T. E. Jones, S. Beeg, L. Zwiener, M. Scherzer, F. Girgsdies, S. Piccinin, M. Armbrüster, A. Knop-Gericke, and R. Schlögl. Free-atom-like d states in single-atom alloy catalysts. Nat. Chem., 2018, 10(10), 1008-1015. https://doi.org/10.1038/s41557-018-0125-5

    Article  CAS  Google Scholar 

  88. H. Xin, A. Vojvodic, J. Voss, J. K. Nørskov, and F. Abild-Pedersen. Effects of d-band shape on the surface reactivity of transition-metal alloys. Phys. Rev. B, 2014, 89(11), 115114. https://doi.org/10.1103/physrevb.89.115114

    Article  Google Scholar 

Download references

Funding

This work was funded by the Russian Science Foundation (project No. 22-22-00683).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to I. P. Asanov, V. V. Zvereva, A. D. Fedorenko or T. I. Asanova.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Russian Text © The Author(s), 2024, published in Zhurnal Strukturnoi Khimii, 2024, Vol. 65, No. 3, 123441.https://doi.org/10.26902/JSC_id123441

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asanov, I.P., Zvereva, V.V., Fedorenko, A.D. et al. Nature of the Pt–Os Chemical Bond in Nanoalloys. J Struct Chem 65, 431–450 (2024). https://doi.org/10.1134/S0022476624030028

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476624030028

Keywords

Navigation