Skip to main content
Log in

Crystallographic Analysis and Structural Features of Honeycomb Cation Frameworks in Na2FePO4F, NaFePO4, and LiVOPO4 Structures

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

The crystallographic analysis of the structures of compounds Na2FePO4F (I), NaFePO4 (II), and LiVOPO4 (III) reveals that there are vacant channels in “honeycomb” constructions of their cation frameworks. In these structures, the stability is based on a sequence of embedded (according to the “matryoshka” principle) pseudosymmetry-related pseudo-hexagonal configurations. Ordering of cation positions creates their configuration approaching highly symmetrical sublattices that are close in geometry to face-centered (Fcube) and body-centered (Icube) cubic sublattices. The equivalent positions are occupied by different atoms and vacancies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

REFERENCES

  1. H. Nyman, S. Andersson, B. G. Hyde, and M. O′Keeffe. The pyrochlore structure and its relatives. J. Solid State Chem., 1978, 26(2), 123-131. https://doi.org/10.1016/0022-4596(78)90142-1

    Article  CAS  Google Scholar 

  2. M. O′Keeffe and B. G. Hyde. Plane nets in crystal chemistry. Philos. Trans. R. Soc., A, 1980, 295(1417), 553-618. https://doi.org/10.1098/rsta.1980.0150

    Article  Google Scholar 

  3. O. Delgado-Friedrichs and M. O′Keeffe. Identification of and symmetry computation for crystal nets. Acta Crystallogr., Sect. A: Found. Crystallogr., 2003, 59(4), 351-360. https://doi.org/10.1107/s0108767303012017

    Article  Google Scholar 

  4. S. Andersson. An alternative description of the structure of Cu4Cd3. Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem., 1980, 36(11), 2513-2516. https://doi.org/10.1107/s0567740880009326

    Article  Google Scholar 

  5. J.-G. Eon. Euclidian embeddings of periodic nets: definition of a topologically induced complete set of geometric descriptors for crystal structures. Acta Crystallogr., Sect. A: Found. Crystallogr., 2011, 67(1), 68-86. https://doi.org/10.1107/s0108767310042832

    Article  Google Scholar 

  6. O. M. Yaghi, M. O′Keeffe, N. W. Ockwig, H. K. Chae, M. Eddaoudi, and J. Kim. Reticular synthesis and the design of new materials. Nature, 2003, 423(6941), 705-714. https://doi.org/10.1038/nature01650

    Article  CAS  PubMed  Google Scholar 

  7. N. W. Ockwig, O. Delgado-Friedrichs, M. O′Keeffe, and O. M. Yaghi. Reticular chemistry: occurrence and taxonomy of nets and grammar for the design of frameworks. Acc. Chem. Res., 2005, 38(3), 176-182. https://doi.org/10.1021/ar020022l

    Article  CAS  PubMed  Google Scholar 

  8. O. M. Yaghi, M. O′Keeffe, and M. Kanatzidis. Design of solids from molecular building blocks: golden opportunities for solid state chemistry. J. Solid State Chem., 2000, 152(1), 1/2. https://doi.org/10.1006/jssc.2000.8733

    Article  CAS  Google Scholar 

  9. M. O′Keeffe, M. A. Peskov, S. J. Ramsden, and O. M. Yaghi. The reticular chemistry structure resource (RCSR) database of, and symbols for, crystal nets. Acc. Chem. Res., 2008, 41(12), 1782-1789. https://doi.org/10.1021/ar800124u

    Article  CAS  PubMed  Google Scholar 

  10. O. Delgado-Friedrichs, M. D. Foster, M. O′Keeffe, D. M. Proserpio, M. M. J. Treacy, and O. M. Yaghi. What do we know about three-periodic nets? J. Solid State Chem., 2005, 178(8), 2533-2554. https://doi.org/10.1016/j.jssc.2005.06.037

    Article  CAS  Google Scholar 

  11. W. B. Pirson. The Crystal Chemistry and Physics of Metals and Alloys. New York, USA: Willey-Interscience, 1972.

  12. P. I. Kripyakevich. Strukturnye tipy intermetallicheskikh soedinenii (Structural Types of Intermetallic Compounds). Moskow: Nauka, 1977. [In Russian]

  13. N. L. Smirnova. O nekotorykh fundamental′nykh elementakh i chastyakh kristallicheskogo prostranstva (On Some Fundamental Elements and Parts of Crystalline Space). In: Kristallokhimiya mineralov (Crystal Chemistry of Minerals) / Ed. V. A. Frank-Kamenetskii. Leningrad, Russia: Nauka, 1981, 109-114. [In Russian]

  14. G. D. Ilyushin. Cluster self-organization of inorganic crystal-forming systems: Templated nanocluster precursors and self-assembly of framework MT structures of A/B,Zr silicates (A = Na, K; B = Ca, Sr). Crystallogr. Rep., 2012, 57(2), 169-184. https://doi.org/10.1134/s1063774512020095

    Article  CAS  Google Scholar 

  15. G. D. Ilyushin. Theory of cluster self-organization of crystal-forming systems: geometrical-topological modeling of nanocluster precursors with a hierarchical structure. Struct. Chem., 2012, 23(4), 997-1043. https://doi.org/10.1007/s11224-012-0014-2

    Article  CAS  Google Scholar 

  16. V. A. Blatov. Nanocluster analysis of intermetallic structures with the program package TOPOS. Struct. Chem., 2012, 23(4), 955-963. https://doi.org/10.1007/s11224-012-0013-3

    Article  CAS  Google Scholar 

  17. D. Topa, E. Makovicky, T. Balic-Zunic, and W. H. Paar. Kupcikite. Cu3.4Fe0.6Bi5S10, a new Cu Bi sulfosalt from Felbertal, Austria, and its crystal structure. Can. Mineral., 2003, 41(5), 1155-1166. https://doi.org/10.2113/gscanmin.41.5.1155

    Article  CAS  Google Scholar 

  18. G. Ferraris, E. Makovicky, and S. Merlino. Crystallography of Modular Materials. Oxford, England: Oxford University Press, 2004.

  19. V. Petricek and E. Makovicky. Interpretation of selected structures of the bismuthinite-aikinite series as commensurately modulated structures. Can. Mineral., 2006, 44(1), 189-206. https://doi.org/10.2113/gscanmin.44.1.189

    Article  CAS  Google Scholar 

  20. Y. Moëlo, E. Makovicky, N. N. Mozgova, J. L. Jambor, N. Cook, A. Pring, W. Paar, E. H. Nickel, S. Graeser, S. Karup-Møller, T. Balic-Žunic, W. G. Mumme, F. Vurro, and D. Topa. Sulfosalt systematics: a review. Report of the sulfosalt sub-committee of the IMA Commission on Ore Mineralogy. Eur. J. Mineral., 2008, 20(1), 7-62. https://doi.org/10.1127/0935-1221/2008/0020-1778

    Article  CAS  Google Scholar 

  21. L. A. Olsen, T. Balić-Žunić, and E. Makovicky. High-pressure anisotropic distortion of Pb3Bi2S6: a pressure-induced, reversible phase transition with migration of chemical bonds. Inorg. Chem., 2008, 47(15), 6756-6762. https://doi.org/10.1021/ic800380p

    Article  CAS  PubMed  Google Scholar 

  22. D. Topa, E. Makovicky, and H. Dittrich. The crystal structure of 7H : 12Q cannizzarite from Vulcano, Italy. Can. Mineral., 2010, 48(3), 483-495. https://doi.org/10.3749/canmin.48.3.483

    Article  CAS  Google Scholar 

  23. W. H. Paar, M. A. Cooper, Y. Moelo, C. J. Stanley, H. Putz, D. Topa, A. C. Roberts, J. Stirling, J. G. Raith, and R. Rowe. Eldragonite, Cu6BiSe4(Se2), a new mineral species from the El Dragon Mine, Potosi, Bolivia, and its crystal structure. Can. Mineral., 2012, 50(2), 281-294. https://doi.org/10.3749/canmin.50.2.281

    Article  CAS  Google Scholar 

  24. D. Topa, E. Makovicky, G. Ilinca, and H. Dittrich. Cupromakopavonite, Cu8Ag3Pb4Bi19S38, a new mineral species, its crystal structure and the cupropavonite homologous series. Can. Mineral., 2012, 50(2), 295-312. https://doi.org/10.3749/canmin.50.2.295

    Article  CAS  Google Scholar 

  25. S. V. Borisov, S. A. Magarill, and N. V. Pervukhina. Algoritmy i praktika kristallograficheskogo analiza atomnykh struktur (Algorithms and Practice of Crystallographic Analysis of Atomic Structures). Novosibirsk, Russia: Sib. Otd. Ross. Akad. Nauk, 2012. [In Russian]

  26. S. V. Borisov, S. A. Magarill, and N. V. Pervukhina. Crystallographic analysis of a series of inorganic compounds. Russ. Chem. Rev., 2015, 84(4), 393-421. https://doi.org/10.1070/rcr4479

    Article  CAS  Google Scholar 

  27. S. V. Borisov. Crystalline state. J. Struct. Chem., 1993, 33(6), 871-877. https://doi.org/10.1007/bf00745609

    Article  Google Scholar 

  28. E. Dieulesaint and D. Royer. Ondes élastiques dans les solides: Application au traitement du signal. Paris, France: Masson, 1974.

  29. A. Guinier. Théorie et technique de la radiocristallographie. Paris, France: Dunod, 1956.

  30. S. V. Borisov, S. A. Magarill, and N. V. Pervukhina. Structural stability of container crystals for some anti-zeolites. J. Struct. Chem., 2022, 63(7), 1051-1060. https://doi.org/10.1134/s0022476622070034

    Article  CAS  Google Scholar 

  31. S. V. Borisov, N. V. Pervukhina, and S. A. Magarill. On the stability of the [Li2Zn2(bpy)(ndc)3] structure with a metal-organic framework. J. Struct. Chem., 2022, 63(10), 1708-1714. https://doi.org/10.1134/s002247662210016x

    Article  CAS  Google Scholar 

  32. S. V. Borisov, S. A. Magarill, and N. V. Pervukhina. Fedorov groups of crystallographic symmetry as algorithms of space and energy transformations in realization of stable atomic configurations. Crystallogr. Rep., 2020, 65(1), 1-6. https://doi.org/10.1134/s1063774520010058

    Article  CAS  Google Scholar 

  33. A. K. Padhi, K. S. Nanjundaswamy, and J. B. Goodenough. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J. Electrochem. Soc., 1997, 144(4), 1188-1194. https://doi.org/10.1149/1.1837571

    Article  CAS  Google Scholar 

  34. C. M. Julien, A. Mauger, A. Ait-Salah, M. Massot, F. Gendron, and K. Zaghib. Nanoscopic scale studies of LiFePO4 as cathode material in lithium-ion batteries for HEV application. Ionics, 2007, 13(6), 395-411. https://doi.org/10.1007/s11581-007-0149-0

    Article  CAS  Google Scholar 

  35. N. V. Kosova, V. R. Podugolnikov, E. T. Devyatkina, and A. B. Slobodyuk. Structure and electrochemistry of NaFePO4 and Na2FePO4F cathode materials prepared via mechanochemical route. Mater. Res. Bull., 2014, 60, 849-857. https://doi.org/10.1016/j.materresbull.2014.09.081

    Article  CAS  Google Scholar 

  36. K. Brandenburg. DIAMOND (Version 3.2h). Bonn, Germany: Crystal Impact GbR, 2012.

  37. S. A. Gromilov, E. A. Bykova, and S. V. Borisov. Algorithms, software, and examples of pseudotranslational sublattice analysis for crystal structures. Crystallogr. Rep., 2011, 56(6), 947-952. https://doi.org/10.1134/s1063774511060101

    Article  CAS  Google Scholar 

  38. G. He, A. Huq, W. H. Kan, and A. Manthiram. β-NaVOPO4 Obtained by a low-temperature synthesis process: a new 3.3 V cathode for sodium-ion batteries. Chem. Mater., 2016, 28(5), 1503-1512. https://doi.org/10.1021/acs.chemmater.5b04992

    Article  CAS  Google Scholar 

  39. S. V. Borisov, N. V. Pervukhina, and S. A. Magarill. The concentration of crystal structures in high-symmetry structural types (stencils) as a consequence of crystal dynamics. Crystallogr. Rep., 2022, 67(2), 150-155. https://doi.org/10.1134/s106377452202002x

    Article  CAS  Google Scholar 

Download references

Funding

The work was supported by the Ministry of Science and Higher Education of the Russian Federation (project No. 121031760313-8).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Pervukhina.

Ethics declarations

The authors declare that they have no conflicts of interests.

Additional information

Russian Text © The Author(s), 2023, published in Zhurnal Strukturnoi Khimii, 2023, Vol. 64, No. 7, 113238.https://doi.org/10.26902/JSC_id113238

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borisov, S.V., Pervukhina, N.V. & Magarill, S.A. Crystallographic Analysis and Structural Features of Honeycomb Cation Frameworks in Na2FePO4F, NaFePO4, and LiVOPO4 Structures. J Struct Chem 64, 1283–1295 (2023). https://doi.org/10.1134/S0022476623070120

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476623070120

Keywords

Navigation