Skip to main content
Log in

Ni(II) and Co(II) Acetato Complexes of Pyrazole-Pyridine Based Ligand: Synthesis, Structure and Thermal Decomposition

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Two novel acetato complexes with NNN type planar bdmpp ligand, [Ni(OAc)(H2O)2(bdmpp)]OAc (1) and [Co(OAc)(H2O)2(bdmpp)]OAc (2) (bdmpp: 2,6-bis(3,5-dimethylpyrazolyl)pyridine) were synthesized and characterized by elemental analysis, IR spectroscopy and X-ray single-crystal diffraction analysis. Thermal stabilities of these complexes were studied by thermogravimetric and differential thermal analyses. The crystal structures of both complexes were also determined using single-crystal X-ray diffraction. It was found that complexes 1 and 2 possessed smilar octahedral coordination environment in which metal ions were coordinated by N donor atoms of bdmpp, two oxygens of aqua ligands and one oxygen atom from terminal bonding acetato ligand.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

REFERENCES

  1. D. L. Jameson, J. K. Blaho, K. T. Kruger, and K. A. Goldsby. Redox regulation in ruthenium(II) complexes of 2,6-bis(N-pyrazolyl)pyridine ligands: synthetically versatile analogs of 2,2′:6′,2″-terpyridine. Inorg. Chem., 1989, 28(24), 4312-4314. https://doi.org/10.1021/ic00323a005

    Article  CAS  Google Scholar 

  2. M. A. Halcrow. The synthesis and coordination chemistry of 2,6-bis(pyrazolyl)pyridines and related ligands - Versatile terpyridine analogues. Coord. Chem. Rev., 2005, 249(24), 2880-2908. https://doi.org/10.1016/j.ccr.2005.03.010

    Article  CAS  Google Scholar 

  3. D. L. Christenson, C. J. Tokar, and W. B. Tolman. New copper and rhodium cyclopropanation catalysts supported by chiral bis(pyrazolyl)pyridines. A metal-dependent enantioselectivity switch. Organometallics, 1995, 14(5), 2148-2150. https://doi.org/10.1021/om00005a008

    Article  CAS  Google Scholar 

  4. W.-H. Fung, W.-C. Cheng, W.-Y. Yu, C.-M. Che, and T. C. W. Mak. Enantioselective epoxidation of unfunctionalized alkenes by a chiral monooxoruthenium(IV) complex [RuL(bpy)O]2+ {L = 2,6-bis[(4S,7R)-7,8,8-trimethyl-4,5,6,7-tetrahydro-4,7-methanoindazol-2-yl]pyridine; bpy = 2,2′-bipyridine}. J. Chem. Soc., Chem. Commun., 1995, (19), 2007-2008. https://doi.org/10.1039/c39950002007

    Article  Google Scholar 

  5. M. N. Magubane, G. S. Nyamato, S. O. Ojwach, and O. Q. Munro. Structural, kinetic, and DFT studies of the transfer hydrogenation of ketones mediated by (pyrazole)pyridine iron(II) and nickel(II) complexes. RSC Adv., 2016, 6(69), 65205-65221. https://doi.org/10.1039/c6ra12788f

    Article  CAS  Google Scholar 

  6. A. I. Philippopoulos, A. Terzis, C. P. Raptopoulou, V. J. Catalano, and P. Falaras. Synthesis, characterization, and sensitizing properties of heteroleptic RuII complexes based on 2,6-bis(1-pyrazolyl)pyridine and 2,2′-bipyridine-,4′-icarboxylic acid ligands. Eur. J. Inorg. Chem., 2007, 2007(36), 5633-5644. https://doi.org/10.1002/ejic.200700287

    Article  CAS  Google Scholar 

  7. D. O. Onunga, R. Bellam, G. K. Mutua, M. Sitati, M. D. BalaKumaran, D. Jaganyi, and A. Mambanda. Controlling the reactivity of [Pd(II)(N^N^N)Cl]+ complexes using 2,6-bis(pyrazol-2-yl)pyridine ligands for biological application: Substitution reactivity, CT-DNA interactions and in vitro cytotoxicity study. J. Inorg. Biochem., 2020, 213, 111261. https://doi.org/10.1016/j.jinorgbio.2020.111261

    Article  CAS  PubMed  Google Scholar 

  8. C. Hopa, R. Kurtaran, E. Hopa, G. Cetin, E. Dundar, H. Kara, and M. Alkan. Nitrito complexes of nickel(II), copper(II) and cobalt(II) with tridentate pyrazole based planer ligand: Structure, spectroscopy, thermal properties and imitative nuclease activity. Inorg. Chim. Acta, 2015, 429, 15-21. https://doi.org/10.1016/j.ica.2014.12.035

    Article  CAS  Google Scholar 

  9. R. O. Omondi, S. O. Ojwach, D. Jaganyi, and A. A. Fatokun. (Pyrazolyl)pyridine ruthenium(III) complexes: Synthesis, kinetics of substitution reactions with thiourea and biological studies. Inorg. Chem. Commun., 2018, 94, 98-103. https://doi.org/10.1016/j.inoche.2018.06.006

    Article  CAS  Google Scholar 

  10. C. Hopa, H. Yildirim, H. Kara, R. Kurtaran, and M. Alkan. Synthesis, characterization and anti-proliferative activity of Cd(II) complexes with NNN type pyrazole-based ligand and pseudohalide ligands as coligand. Spectrochim. Acta, Part A, 2014, 121, 282-287. https://doi.org/10.1016/j.saa.2013.10.028

    Article  CAS  PubMed  Google Scholar 

  11. C.-W. Tsai, R. E. Kroon, H. C. Swart, J. J. Terblans, and R. A. Harris. Photoluminescence of metal-imidazolate complexes with Cd(II), Zn(II), Co(II) and Ni(II) cation nodes and 2-methylimidazole organic linker. J. Lumin., 2019, 207, 454-459. https://doi.org/10.1016/j.jlumin.2018.11.026

    Article  CAS  Google Scholar 

  12. Z. Zhang, L. Bai, and X. Hu. Alkene hydrosilylation catalyzed by easily assembled Ni(II)-carboxylate MOFs. Chem. Sci., 2019, 10(13), 3791-3795. https://doi.org/10.1039/c9sc00126c

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Y.-J. Sun, Q.-Q. Huang, and J.-J. Zhang. A series of NiII-flavonolate complexes as structural and functional ES (enzyme-substrate) models of the NiII-containing quercetin 2,3-dioxygenase. Dalton Trans., 2014, 43(17), 6480. https://doi.org/10.1039/c3dt53349b

    Article  CAS  PubMed  Google Scholar 

  14. A. Majumder, V. Gramlich, G. M. Rosair, S. R. Batten, J. D. Masuda, M. S. El Fallah, J. Ribas, J.-P. Sutter, C. Desplanches, and S. Mitra. Five new cobalt(II) and copper(II)-1,2,4,5-benzenetetracarboxylate supramolecular architectures: syntheses, structures, and magnetic properties. Cryst. Growth Des., 2006, 6(10), 2355-2368. https://doi.org/10.1021/cg060337y

    Article  CAS  Google Scholar 

  15. C. Hopa, H. Kara, and A. Aybey. Synthesis, structural characterization and biological evaluation of novel mixed-ligand Co(II) complexes as quorum sensing inhibitory agent. J. Mol. Struct., 2020, 1202, 127322. https://doi.org/10.1016/j.molstruc.2019.127322

    Article  CAS  Google Scholar 

  16. Ç. Hopa, R. Kurtaran, M. Alkan, H. Kara, and R. Hughes. Synthesis, characterization and thermal properties of cobalt(II), nickel(II) and copper(II) complexes of 2,6-bis(3,4,5-trimethyl-N-pyrazolyl)pyridine): the crystal structure of [Co(btmpp)(H2O)2(NO3)]NO3. Transition Met. Chem., 2010, 35(8), 1013-1018. https://doi.org/10.1007/s11243-010-9424-4

    Article  CAS  Google Scholar 

  17. R. Kurtaran, C. Arici, K. C. Emregül, D. Ülkü, O. Atakol, and M. Taştekin. Synthesis, Crystal structure, and electrochemical behaviour of an azido μ-bridged Ni2+ complex. Z. Anorg. Allg. Chem., 2003, 629(9), 1617-1621. https://doi.org/10.1002/zaac.200200372

    Article  CAS  Google Scholar 

  18. F. Nazli Dınçer Kaya, I. Svoboda, O. Atakol, Ü. Ergun, A. Kenar, M. Sari, and K. C. Emregül. Nickel(II) complexes prepared from NNN type ligands and pseudohalogens. J. Therm. Anal. Calorim., 2008, 92(2), 617-624. https://doi.org/10.1007/s10973-007-7709-4

    Article  Google Scholar 

  19. S. Öz, N. Yılmaz, C. Arıcı, I. Svoboda, M. A. Akay, and O. Atakol. Synthesis, crystal structure, and thermal decomposition of two Co(II) complexes with NNN pyrazolyl type ligand and pseudo-halogen. Russ. J. Coord. Chem., 2013, 39(12), 829-835. https://doi.org/10.1134/s1070328413110055

    Article  Google Scholar 

  20. M. N. Magubane, G. S. Nyamato, S. O. Ojwach, and O. Q. Munro. Structural, kinetic, and DFT studies of the transfer hydrogenation of ketones mediated by (pyrazole)pyridine iron(II) and nickel(II) complexes. RSC Adv., 2016, 6(69), 65205-65221. https://doi.org/10.1039/c6ra12788f

    Article  CAS  Google Scholar 

  21. SADABS, v. 2008/1. Madison, WI, USA: Bruker AXS, 2008.

  22. G. M. Sheldrick. A short history of SHELX. Acta Crystallogr., Sect. A: Found. Crystallogr., 2008, 64(1), 112-122. https://doi.org/10.1107/s0108767307043930

    Article  Google Scholar 

  23. A. Altomare, G. Cascarano, C. Giacovazzo, A. Guagliardi, M. C. Burla, G. Polidori, and M. Camalli. SIR 92 - a program for automatic solution of crystal structures by direct methods. J. Appl. Crystallogr., 1994, 27(3), 435. https://doi.org/10.1107/s002188989400021x

    Article  Google Scholar 

  24. G. M. Sheldrick. Crystal structure refinement with SHELXL. Acta Crystallogr., Sect. C: Struct. Chem., 2015, 71(1), 3-8. https://doi.org/10.1107/s2053229614024218

    Article  Google Scholar 

  25. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, and H. Puschmann. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr., 2009, 42(2), 339-341. https://doi.org/10.1107/s0021889808042726

    Article  CAS  Google Scholar 

  26. P. T. Beurskens, G. Admiraal, G. Beurskens, W. P. Bosman, R. de Gelder, R. Israel, and J. M. M. Smits. The DIRDIF-99 program system: Technical Report of the Crystallography Laboratory. Nijmegen, Netherlands: University of Nijmegen, 1999.

  27. CrystalStructure 3.5.1: Crystal Structure Analysis Package. Woodlands, TX, USA: Rigaku, 2000-2003.

  28. D. J. Watkin, C. K. Prout, J. R. Carruthers, and P. W. Betteridge. CRYSTALS, Issue 10. Oxford, UK: Chemical Crystallography Laboratory, 1996.

  29. D .L. Jameson and K. A. Goldsby. 2,6-bis(N-pyrazolyl)pyridines: the convenient synthesis of a family of planar tridentate N3 ligands that are terpyridine analogs. J. Org. Chem., 1990, 55(17), 4992-4994. https://doi.org/10.1021/jo00304a007

    Article  CAS  Google Scholar 

  30. M. T. Jackson, M. Spiegel, P. J. Farmer, N. C. Duncan, B. Rich, M. E. Jones, K. A. Brien, K. K. Klausmeyer, and C. M. Garner. First row metal complexes of the hindered tridentate ligand 2,6-bis-(3′,5′-diphenylpyrazolyl)pyridine. Inorg. Chim. Acta, 2018, 473, 180-185. https://doi.org/10.1016/j.ica.2017.12.032

    Article  CAS  Google Scholar 

  31. P. Manikandan, K. R. Justin Thomas, and P. T. Manoharan. Structural and spectral diversities in copper(II) complexes of 2,6-bis(3,5-dimethylpyrazol-1-ylmethyl)pyridine. J. Chem. Soc., Dalton Trans., 2000, (16), 2779-2785. https://doi.org/10.1039/b002289f

    Article  Google Scholar 

  32. N. Nakamoto. Infrared and Raman Spectra of Inorganic and Coordination Compounds, 6th ed. Hoboken, New Jersey, USA: John Wiley & Sons, Inc., 2009.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Hopa.

Ethics declarations

The author declares that he has no conflicts of interests.

Additional information

Text © The Author(s), 2023, published in Zhurnal Strukturnoi Khimii, 2023, Vol. 64, No. 5, 111520.https://doi.org/10.26902/JSC_id111520

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hopa, C. Ni(II) and Co(II) Acetato Complexes of Pyrazole-Pyridine Based Ligand: Synthesis, Structure and Thermal Decomposition. J Struct Chem 64, 954–961 (2023). https://doi.org/10.1134/S002247662305013X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002247662305013X

Keywords

Navigation