Skip to main content
Log in

Interaction of Atomic Oxygen with a Polycrystalline Au Surface: XPS and TPD Study

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Adsorption of atomic oxygen on the surface of polycrystalline gold is studied in detail by XPS and TPD methods. It is shown that the action of atomic oxygen at initial stages leads to the formation of chemisorbed atomic oxygen with the deposition thickness Θ = 0–0.5 monolayers. Increased exposure to atomic oxygen leads to the formation of 2D gold oxide. At the maximum oxygen saturation, the calculated oxide layer thickness is 3 Å, and its stoichiometry is close to AuO2. The TPD analysis shows that thermal stability of adsorbed oxygen is 510 K for the chemisorbed layer and 525 K for the 2D gold oxide. The structure of the 2D gold oxide is determined as one layer of gold atoms and two layers of oxygen atoms adsorbed on the surface and inside the subsurface layer. The reactivity of adsorbed oxygen is tested by the interaction of CO and H2 at room temperature; all the oxygen forms are shown to be active. It is established that the reactivity towards CO is 2 orders of magnitude higher than towards H2, suggesting that oxygen species take part in the PROX mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

REFERENCES

  1. M. Haruta. Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide. J. Catal., 1989, 115(2), 301-309. https://doi.org/10.1016/0021-9517(89)90034-1

    Article  CAS  Google Scholar 

  2. M. Haruta, S. Tsubota, T. Kobayashi, H. Kageyama, M. J. Genet, and B. Delmon. Low-temperature oxidation of CO over gold supported on TiO2, α-Fe2O3, and Co3O4. J. Catal., 1993, 144(1), 175-192. https://doi.org/10.1006/jcat.1993.1322

    Article  CAS  Google Scholar 

  3. M. Haruta and M. Daté. Advances in the catalysis of Au nanoparticles. Appl. Catal., A, 2001, 222(1/2), 427-437. https://doi.org/10.1016/s0926-860x(01)00847-x

    Article  CAS  Google Scholar 

  4. G. C. Bond and D. T. Thompson. Catalysis by gold. Catal. Rev., 1999, 41(3/4), 319-388. https://doi.org/10.1081/cr-100101171

    Article  CAS  Google Scholar 

  5. F. Boccuzzi, A. Chiorino, M. Manzoli, D. Andreeva, T. Tabakova, L. Ilieva, and V. Iadakiev. Gold, silver and copper catalysts supported on TiO2 for pure hydrogen production. Catal. Today, 2002, 75(1-4), 169-175. https://doi.org/10.1016/s0920-5861(02)00060-3

    Article  CAS  Google Scholar 

  6. M. A. P. Dekkers, M. J. Lippits, and B. E. Nieuwenhuys. CO adsorption and oxidation on Au/TiO2. Catal. Lett., 1998, 56, 195-197. https://doi.org/10.1023/A:1019037902776

    Article  CAS  Google Scholar 

  7. R. Meyer, C. Lemire, S. K. Shaikhutdinov, and H.-J. Freund. Surface chemistry of catalysis by gold. Gold Bull., 2004, 37(1/2), 72-124. https://doi.org/10.1007/bf03215519

    Article  CAS  Google Scholar 

  8. A. S. K. Hashmi and G. J. Hutchings. Gold catalysis. Angew. Chem., Int. Ed., 2006, 45(47), 7896-7936. https://doi.org/10.1002/anie.200602454

    Article  Google Scholar 

  9. T. A. Baker, X. Liu, and C. M. Friend. The mystery of gold′s chemical activity: local bonding, morphology and reactivity of atomic oxygen. Phys. Chem. Chem. Phys., 2011, 13(1), 34-46. https://doi.org/10.1039/c0cp01514h

    Article  CAS  PubMed  Google Scholar 

  10. P. Rodriguez and M. T. M. Koper. Electrocatalysis on gold. Phys. Chem. Chem. Phys., 2014, 16(27), 13583-13594. https://doi.org/10.1039/c4cp00394b

    Article  CAS  PubMed  Google Scholar 

  11. J. Gong. Structure and surface chemistry of gold-based model catalysts. Chem. Rev., 2012, 112(5), 2987-3054. https://doi.org/10.1021/cr200041p

    Article  CAS  PubMed  Google Scholar 

  12. L. B. Vilhelmsen and B. Hammer. Identification of the catalytic site at the interface perimeter of Au clusters on rutile TiO2 (110). ACS Catal., 2014, 4(6), 1626-1631. https://doi.org/10.1021/cs500202f

    Article  CAS  Google Scholar 

  13. H. Lian, M. Jia, W. Pan, Y. Li, W. Zhang, and D. Jiang. Gold-base catalysts supported on carbonate for low-temperature CO oxidation. Catal. Commun., 2005, 6(1), 47-51. https://doi.org/10.1016/j.catcom.2004.10.012

    Article  CAS  Google Scholar 

  14. F. Somodi, I. Borbáth, M. Hegedűs, K. Lázár, I. E. Sajó, O. Geszti, S. Rojas, J. L. G. Fierro, and J. L. Margitfalvi. Promoting effect of tin oxides on alumina-supported gold catalysts used in CO oxidation. Appl. Surf. Sci., 2009, 256(3), 726-736. https://doi.org/10.1016/j.apsusc.2009.08.049

    Article  CAS  Google Scholar 

  15. O. H. Laguna, F. Romero Sarria, M. A. Centeno, and J. A. Odriozola. Gold supported on metal-doped ceria catalysts (M = Zr, Zn and Fe) for the preferential oxidation of CO (PROX). J. Catal., 2010, 276(2), 360-370. https://doi.org/10.1016/j.jcat.2010.09.027

    Article  CAS  Google Scholar 

  16. L. Ilieva, G. Pantaleo, I. Ivanov, R. Zanella, J. W. Sobczak, W. Lisowski, A. M. Venezia, and D. Andreeva. Preferential oxidation of CO in H2 rich stream (PROX) over gold catalysts supported on doped ceria: Effect of water and CO2. Catal. Today, 2011, 175(1), 411-419. https://doi.org/10.1016/j.cattod.2011.05.041

    Article  CAS  Google Scholar 

  17. O. H. Laguna, M. A. Centeno, G. Arzamendi, L. M. Gandía, F. Romero-Sarria, and J. A. Odriozola. Iron-modified ceria and Au/ceria catalysts for total and preferential oxidation of CO (TOX and PROX). Catal. Today, 2010, 157(1-4), 155-159. https://doi.org/10.1016/j.cattod.2010.04.011

    Article  CAS  Google Scholar 

  18. Y. Ryabenkova, Q. He, P. J. Miedziak, N. F. Dummer, S. H. Taylor, A. F. Carley, D. J. Morgan, N. Dimitratos, D. J. Willock, D. Bethell, D. W. Knight, D. Chadwick, C. J. Kiely, and G. J. Hutchings. The selective oxidation of 1,2-propanediol to lactic acid using mild conditions and gold-based nanoparticulate catalysts. Catal. Today, 2013, 203, 139-145. https://doi.org/10.1016/j.cattod.2012.05.037

    Article  CAS  Google Scholar 

  19. G. L. Brett, P. J. Miedziak, N. Dimitratos, J. A. Lopez-Sanchez, N. F. Dummer, R. Tiruvalam, C. J. Kiely, D. W. Knight, S. H. Taylor, D. J. Morgan, A. F. Carley, and G. J. Hutchings. Oxidative esterification of 1,2-propanediol using gold and gold-palladium supported nanoparticles. Catal. Sci. Technol., 2012, 2(1), 97-104. https://doi.org/10.1039/c1cy00254f

    Article  CAS  Google Scholar 

  20. T. Hayashi, K. Tanaka, and M. Haruta. Selective vapor-phase epoxidation of propylene over Au/TiO2 catalysts in the presence of oxygen and hydrogen. J. Catal., 1998, 178(2), 566-575. https://doi.org/10.1006/jcat.1998.2157

    Article  CAS  Google Scholar 

  21. M. Turner, O. P. H. Vaughan, and R. M. Lambert. Partial oxidations with NO2 catalyzed by large gold particles. Chem. Commun., 2008, (20), 2316. https://doi.org/10.1039/b803828g

    Article  Google Scholar 

  22. G. Ertl. Reactions at surfaces: from atoms to complexity (Nobel lecture). Angew. Chem., Int. Ed., 2008, 47(19), 3524-3535. https://doi.org/10.1002/anie.200800480

    Article  CAS  Google Scholar 

  23. G. A. Somorjai and J. Y. Park. Molecular surface chemistry by metal single crystals and nanoparticles from vacuum to high pressure. Chem. Soc. Rev., 2008, 37(10), 2155. https://doi.org/10.1039/b719148k

    Article  CAS  PubMed  Google Scholar 

  24. H.-J. Freund and G. Pacchioni. Oxide ultra-thin films on metals: new materials for the design of supported metal catalysts. Chem. Soc. Rev., 2008, 37(10), 2224. https://doi.org/10.1039/b718768h

    Article  CAS  PubMed  Google Scholar 

  25. G. C. Bond. The catalytic properties of gold. Gold Bull., 1972, 5(1), 11-13. https://doi.org/10.1007/bf03215149

    Article  CAS  Google Scholar 

  26. P. Fuchs. Low-pressure plasma cleaning of Au and PtIr noble metal surfaces. Appl. Surf. Sci., 2009, 256(5), 1382-1390. https://doi.org/10.1016/j.apsusc.2009.08.093

    Article  CAS  Google Scholar 

  27. B. Koslowski, H.-G. Boyen, C. Wilderotter, G. Kästle, P. Ziemann, R. Wahrenberg, and P. Oelhafen. Oxidation of preferentially (111)-oriented Au films in an oxygen plasma investigated by scanning tunneling microscopy and photoelectron spectroscopy. Surf. Sci., 2001, 475(1-3), 1-10. https://doi.org/10.1016/s0039-6028(00)00986-9

    Article  CAS  Google Scholar 

  28. A. I. Stadnichenko, S. V. Koshcheev, and A. I. Boronin. Oxidation of the polycrystalline gold foil surface and XPS study of oxygen states in oxide layers. Moscow Univ. Chem. Bull., 2007, 62(6), 343-349. https://doi.org/10.3103/s0027131407060090

    Article  Google Scholar 

  29. J. M. Gottfried, K. J. Schmidt, S. L. M. Schroeder, and K. Christmann. Spontaneous and electron-induced adsorption of oxygen on Au(110)-(1×2). Surf. Sci., 2002, 511(1-3), 65-82. https://doi.org/10.1016/s0039-6028(02)01555-8

    Article  CAS  Google Scholar 

  30. J. M. Gottfried, K. J. Schmidt, S. L. M. Schroeder, and K. Christmann. Oxygen chemisorption on Au-(1×2) II. Spectroscopic and reactive thermal desorption measurements. Surf. Sci., 2003, 525(1-3), 197-206. https://doi.org/10.1016/s0039-6028(02)02559-1

    Article  CAS  Google Scholar 

  31. N. B. Bazhutin, G. K. Boreskov, and V. I. Savchenko. Adsorption of molecular and atomic oxygen on gold. React. Kinet. Catal. Lett., 1979, 10(4), 337-340. https://doi.org/10.1007/bf02075320

    Article  CAS  Google Scholar 

  32. N. D. S. Canning, D. Outka, and R. J. Madix. The adsorption of oxygen on gold. Surf. Sci., 1984, 141(1), 240-254. https://doi.org/10.1016/0039-6028(84)90209-7

    Article  CAS  Google Scholar 

  33. D. C. Lim, R. Dietsche, G. Ganteför, and Y. D. Kim. Oxidation of deposited Aun (n = 2–13) on SiO2/Si: Influence of the NaOH(aq) treatment. Chem. Phys., 2009, 359(1-3), 161-165. https://doi.org/10.1016/j.chemphys.2009.03.023

    Article  CAS  Google Scholar 

  34. C. Linsmeier and J. Wanner. Reactions of oxygen atoms and molecules with Au, Be, and W surfaces. Surf. Sci., 2000, 454-456, 305-309. https://doi.org/10.1016/s0039-6028(00)00215-6

    Article  CAS  Google Scholar 

  35. T. A. Baker, B. Xu, X. Liu, E. Kaxiras, and C. M. Friend. Nature of oxidation of the Au(111) surface: experimental and theoretical investigation. J. Phys. Chem. C, 2009, 113(38), 16561-16564. https://doi.org/10.1021/jp9052192

    Article  CAS  Google Scholar 

  36. M. M. Biener, J. Biener, and C. M. Friend. Enhanced transient reactivity of an O-sputtered Au(111) surface. Surf. Sci., 2005, 590(2/3), L259-L265. https://doi.org/10.1016/j.susc.2005.06.003

    Article  CAS  Google Scholar 

  37. N. Saliba, D. H. Parker, and B. E. Koel. Adsorption of oxygen on Au(111) by exposure to ozone. Surf. Sci., 1998, 410(2/3), 270-282. https://doi.org/10.1016/s0039-6028(98)00309-4

    Article  CAS  Google Scholar 

  38. J. Kim, E. Samano, and B. E. Koel. Oxygen adsorption and oxidation reactions on Au(211) surfaces: Exposures using O2 at high pressures and ozone (O3) in UHV. Surf. Sci., 2006, 600(19), 4622-4632. https://doi.org/10.1016/j.susc.2006.07.057

    Article  CAS  Google Scholar 

  39. A. Y. Klyushin, T. C. R. Rocha, M. Hävecker, A. Knop-Gericke, and R. Schlögl. A near ambient pressure XPS study of Au oxidation. Phys. Chem. Chem. Phys., 2014, 16(17), 7881. https://doi.org/10.1039/c4cp00308j

    Article  CAS  PubMed  Google Scholar 

  40. I. Nakamura, A. Takahashi, and T. Fujitani. Selective dissociation of O3 and adsorption of CO on various Au single crystal surfaces. Catal. Lett., 2009, 129(3/4), 400-403. https://doi.org/10.1007/s10562-009-9846-9

    Article  CAS  Google Scholar 

  41. V. Dolique, A.-L. Thomann, E. Millon, A. Petit, and P. Brault. About the key factors driving the resistivity of AuOx thin films grown by reactive magnetron sputtering. Appl. Surf. Sci., 2014, 295, 194-197. https://doi.org/10.1016/j.apsusc.2014.01.026

    Article  CAS  Google Scholar 

  42. V. Matolín, M. Cabala, I. Matolínová, M. Škoda, J. Libra, M. Václavů, K. C. Prince, T. Skála, H. Yoshikawa, Y. Yamashita, S. Ueda, and K. Kobayashi. Au+ and Au3+ ions in CeO2 rf-sputtered thin films. J. Phys. D: Appl. Phys., 2009, 42(11), 115301. https://doi.org/10.1088/0022-3727/42/11/115301

    Article  CAS  Google Scholar 

  43. E. Irissou, M.-C. Denis, M. Chaker, and D. Guay. Gold oxide thin film grown by pulsed laser deposition in an O2 atmosphere. Thin Solid Films, 2005, 472(1/2), 49-57. https://doi.org/10.1016/j.tsf.2004.06.092

    Article  CAS  Google Scholar 

  44. K. Juodkazis. XPS studies on the gold oxide surface layer formation. Electrochem. Commun., 2000, 2(7), 503-507. https://doi.org/10.1016/s1388-2481(00)00069-2

    Article  CAS  Google Scholar 

  45. F. J. Rodríguez Nieto, E. Fachini, C. R. Cabrera, and A. J. Arvia. X-ray photoelectron spectroscopy of oxygen-containing layers formed by a linear potential scan on stepped gold (111) films in aqueous sulphuric acid. Thin Solid Films, 2009, 517(5), 1534-1540. https://doi.org/10.1016/j.tsf.2008.09.036

    Article  CAS  Google Scholar 

  46. A. M. Visco, F. Neri, G. Neri, A. Donato, C. Milone, and S. Galvagno. X-ray photoelectron spectroscopy of Au/Fe2O3 catalysts. Phys. Chem. Chem. Phys., 1999, 1(11), 2869-2873. https://doi.org/10.1039/a900838a

    Article  CAS  Google Scholar 

  47. A. K. Tripathi, V. S. Kamble, and N. M. Gupta. Microcalorimetry, adsorption, and reaction studies of CO, O2, and CO+O2 over Au/Fe2O3, Fe2O3, and polycrystalline gold catalysts. J. Catal., 1999, 187(2), 332-342. https://doi.org/10.1006/jcat.1999.2618

    Article  CAS  Google Scholar 

  48. T. Bär, T. Visart de Bocarmé, B. E. Nieuwenhuys, and N. Kruse. CO oxidation on gold surfaces studied on the atomic scale. Catal. Lett., 2001, 74, 127-131. https://doi.org/10.1023/A:1016685130974

    Article  Google Scholar 

  49. A. I. Stadnichenko, E. M. Slavinskaya, E. A. Fedorova, D. A. Goncharova, V. I. Zaikovskii, T. Y. Kardash, V. A. Svetlichnyi, and A. I. Boronin. Activation of Au–CeO2 composites prepared by pulsed laser ablation in the reaction of low-temperature CO oxidation. J. Struct. Chem., 2021, 62(12), 1918-1934. https://doi.org/10.1134/s0022476621120118

    Article  CAS  Google Scholar 

  50. B. K. Min and C. M. Friend. Heterogeneous gold-based catalysis for green chemistry: low-temperature CO oxidation and propene oxidation. Chem. Rev., 2007, 107(6), 2709-2724. https://doi.org/10.1021/cr050954d

    Article  CAS  PubMed  Google Scholar 

  51. S. Minicò, S. Scirè, C. Crisafulli, A. M. Visco, and S. Galvagno. FT-IR study of Au/Fe2O3 catalysts for CO oxidation at low temperature. Catal. Lett., 1997, 47, 273-276. https://doi.org/10.1023/A:1019081727173

    Article  Google Scholar 

  52. L. S. Kibis, A. I. Stadnichenko, E. M. Pajetnov, S. V. Koscheev, V. I. Zaykovskii, and A. I. Boronin. The investigation of oxidized silver nanoparticles prepared by thermal evaporation and radio-frequency sputtering of metallic silver under oxygen. Appl. Surf. Sci., 2010, 257(2), 404-413. https://doi.org/10.1016/j.apsusc.2010.07.002

    Article  CAS  Google Scholar 

  53. D. A. Svintsitskiy, A. I. Stadnichenko, D. V. Demidov, S. V. Koscheev, and A. I. Boronin. Investigation of oxygen states and reactivities on a nanostructured cupric oxide surface. Appl. Surf. Sci., 2011, 257(20), 8542-8549. https://doi.org/10.1016/j.apsusc.2011.05.012

    Article  CAS  Google Scholar 

  54. R. V. Gulyaev, A. I. Stadnichenko, E. M. Slavinskaya, A. S. Ivanova, S. V. Koscheev, and A. I. Boronin. In situ preparation and investigation of Pd/CeO2 catalysts for the low-temperature oxidation of CO. Appl. Catal., A, 2012, 439/440, 41-50. https://doi.org/10.1016/j.apcata.2012.06.045

    Article  CAS  Google Scholar 

  55. L. S. Kibis, A. I. Stadnichenko, S. V. Koscheev, V. I. Zaikovskii, and A. I. Boronin. Highly oxidized palladium nanoparticles comprising Pd4+ species: spectroscopic and structural aspects, thermal stability, and reactivity. J. Phys. Chem. C, 2012, 116(36), 19342-19348. https://doi.org/10.1021/jp305166k

    Article  CAS  Google Scholar 

  56. M. H. Matloob and M. W. Roberts. Electron spectroscopic study of nitric oxide adsorbed on copper. Phys. Scr., 1977, 16(5/6), 420-424. https://doi.org/10.1088/0031-8949/16/5-6/040

    Article  Google Scholar 

  57. Practical Surface Analysis: by Auger and X-Ray Photoelectron Spectroscopy / Eds. D. Briggs and M. Seah. Chichester, England: Wiley, 1983.

  58. M. P. Seah and W. A. Dench. Quantitative electron spectroscopy of surfaces: A standard data base for electron inelastic mean free paths in solids. Surf. Interface Anal., 1979, 1(1), 2-11. https://doi.org/10.1002/sia.740010103

    Article  CAS  Google Scholar 

  59. J. F. Moulder, W. F. Stickle, P. E. Sobol, K. D. Bomben, J. Chastain, and R. C. King Jr. Handbook of X-Ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data. Eden Prairie, Minnesota, USA: Perkin-Elmer, Physical Electronics Division, 1992.

  60. D. A. Svintsitskiy, A. P. Chupakhin, E. M. Slavinskaya, O. A. Stonkus, A. I. Stadnichenko, S. V. Koscheev, and A. I. Boronin. Study of cupric oxide nanopowders as efficient catalysts for low-temperature CO oxidation. J. Mol. Catal. A: Chem., 2013, 368/369, 95-106. https://doi.org/10.1016/j.molcata.2012.11.015

    Article  CAS  Google Scholar 

  61. D. E. Eastman, F. J. Himpsel, and J. F. van der Veen. Photoemission studies of surface core-level shifts and their applications. J. Vac. Sci. Technol., 1982, 20(3), 609-616. https://doi.org/10.1116/1.571405

    Article  CAS  Google Scholar 

  62. P. H. Citrin, G. K. Wertheim, and Y. Baer. Core-level binding energy and density of states from the surface atoms of gold. Phys. Rev. Lett., 1978, 41(20), 1425-1428. https://doi.org/10.1103/physrevlett.41.1425

    Article  CAS  Google Scholar 

  63. W. F. Egelhoff. Core-level binding-energy shifts at surfaces and in solids. Surf. Sci. Rep., 1987, 6(6-8), 253-415. https://doi.org/10.1016/0167-5729(87)90007-0

    Article  Google Scholar 

  64. S. D. Senanayake, D. Stacchiola, P. Liu, C. B. Mullins, J. Hrbek, and J. A. Rodriguez. Interaction of CO with OH on Au(111): HCOO, CO3, and HOCO as key intermediates in the water-gas shift reaction. J. Phys. Chem. C, 2009, 113(45), 19536-19544. https://doi.org/10.1021/jp908169s

    Article  CAS  Google Scholar 

  65. P. A. Redhead. Thermal desorption of gases. Vacuum, 1962, 12(4), 203-211. https://doi.org/10.1016/0042-207x(62)90978-8

    Article  CAS  Google Scholar 

  66. K. Sun, M. Kohyama, S. Tanaka, and S. Takeda. Structures and stabilities of gold oxide films on gold surfaces in O2 atmosphere. Surf. Sci., 2014, 628, 41-49. https://doi.org/10.1016/j.susc.2014.05.011

    Article  CAS  Google Scholar 

  67. W. Huang, R. Zhai, and X. Bao. Direct observation of subsurface oxygen on the defects of Pd(100). Surf. Sci., 1999, 439(1-3), L803-L807. https://doi.org/10.1016/s0039-6028(99)00820-1

    Article  CAS  Google Scholar 

  68. A. I. Titkov, A. N. Salanov, S. V. Koscheev, and A. I. Boronin. Mechanisms of Pd(110) surface reconstruction and oxidation: XPS, LEED and TDS study. Surf. Sci., 2006, 600(18), 4119-4125. https://doi.org/10.1016/j.susc.2006.01.131

    Article  CAS  Google Scholar 

  69. A. I. Titkov, A. N. Salanov, S. V. Koscheev, and A. I. Boronin. TDS and XPS study of oxygen diffusion into subsurface layers of Pd(110). React. Kinet. Catal. Lett., 2005, 86(2), 371-379. https://doi.org/10.1007/s11144-005-0337-8

    Article  CAS  Google Scholar 

  70. J.-W. He and P. R. Norton. Thermal desorption of oxygen from a Pd(110) surface. Surf. Sci., 1988, 204(1/2), 26-34. https://doi.org/10.1016/0039-6028(88)90265-8

    Article  CAS  Google Scholar 

  71. J. Lauterbach, K. Asakura, and H. H. Rotermund. Subsurface oxygen on Pt(100): kinetics of the transition from chemisorbed to subsurface state and its reaction with CO, H2 and O2. Surf. Sci., 1994, 313(1/2), 52-63. https://doi.org/10.1016/0039-6028(94)91156-8

    Article  CAS  Google Scholar 

  72. N. Mcmillan, T. Lele, C. Snively, and J. Lauterbach. Subsurface oxygen formation on Pt(100): experiments and modeling. Catal. Today, 2005, 105(2), 244-253. https://doi.org/10.1016/j.cattod.2005.02.042

    Article  CAS  Google Scholar 

Download references

Funding

This work was funded by the Ministry of Science and Higher Education of the Russian Federation within State Assignment for the Institute of Catalysis SB RAS (project AAAA-A21-121011390053-4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Stadnichenko.

Ethics declarations

The authors declare that they have no conflicts of interests.

Additional information

Russian Text © The Author(s), 2023, published in Zhurnal Strukturnoi Khimii, 2023, Vol. 64, No. 5, 110163.https://doi.org/10.26902/JSC_id110163

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stadnichenko, A.I., Koshcheev, S.V. & Boronin, A.I. Interaction of Atomic Oxygen with a Polycrystalline Au Surface: XPS and TPD Study. J Struct Chem 64, 871–883 (2023). https://doi.org/10.1134/S0022476623050062

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476623050062

Keywords

Navigation