Skip to main content
Log in

Structural Features of Complexes [Co(dppaPh)2(CH3CN)2](BF4)2 and [Co(dppaPh)21-P4)]BF4 (dppaPh = N,N-bis(Diphenylphosphino)Aniline)

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

A new cobalt complex [Co(dppaPh)2(CH3CN)2](BF4)2 (1) (dppaPh = N,N-bis(diphenylphosphino)aniline) is synthesized and structurally characterized. The structural features of this complex are compared with those of previously described complex [Co(dppaPh)21-P4)]BF4 whose coordination sphere contains an η1-coordinated molecule of white phosphorus. The role of the solvent in the crystallization of 1 is established: the reaction in CH3CN yields a stable octahedral complex with two solvent molecules coordinated in axial positions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1

Similar content being viewed by others

REFERENCES

  1. S. M. Mansell, Catalytic Applications of Small Bite-Angle Diphosphorus Ligands with Single-Atom Linkers. Dalton Trans. 2017, 46(44), 15157-15174, https://doi.org/10.1039/c7dt03395h

    Article  CAS  PubMed  Google Scholar 

  2. K. A. Alferov, G. P. Belov, and Y. Meng. Chromium catalysts for selective ethylene oligomerization to 1-hexene and 1-octene: Recent results. Appl. Catal., A, 2017, 542, 71-124. https://doi.org/10.1016/j.apcata.2017.05.014

    Article  CAS  Google Scholar 

  3. G. E. Bekmukhamedov, A. V. Sukhov, A. M. Kuchkaev, and D. G. Yakhvarov. Ni-based complexes in selective ethylene oligomerization processes. Catalysts, 2020, 10(5), 498. https://doi.org/10.3390/catal10050498

    Article  CAS  Google Scholar 

  4. I. E. Nifant′ev, A. A. Vinogradov, A. A. Vinogradov, V. A. Roznyatovsky, Y. K. Grishin, A. V. Ivanyuk, I. V. Sedov, A. V. Churakov, and P. V. Ivchenko. 5,6-Dihydrodibenzo[c,e][1,2]azaphosphinine-based PNP ligands, Cr(0) coordination, and Cr(III) precatalysts for ethylene oligomerization. Organometallics, 2018, 37(16), 2660-2664. https://doi.org/10.1021/acs.organomet.8b00427

    Article  CAS  Google Scholar 

  5. L. Liu, Z. Liu, R. Cheng, X. He, and B. Liu. Unraveling the effects of H2, N substituents and secondary ligands on Cr/PNP-catalyzed ethylene selective oligomerization. Organometallics, 2018, 37(21), 3893-3900. https://doi.org/10.1021/acs.organomet.8b00578

    Article  CAS  Google Scholar 

  6. F. Alam, H. Fan, C. Dong, J. Zhang, J. Ma, Y. Chen, and T. Jiang. Chromium catalysts stabilized by alkylphosphanyl PNP ligands for selective ethylene tri-/tetramerization. J. Catal., 2021, 404, 163-173. https://doi.org/10.1016/j.jcat.2021.09.025

    Article  CAS  Google Scholar 

  7. E. A. Jaseer, N. Garcia, S. Barman, M. Khawaji, W. Xu, H. Alasiri, A. M. P. Peedikakkal, M. N. Akhtar, and R. Theravalappil. Highly efficient ethylene tetramerization using Cr catalysts constructed with trifluoromethyl-substituted N-aryl PNP ligands. ACS Omega, 2022, 7(19), 16333-16340. https://doi.org/10.1021/acsomega.1c06657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. H. Shao, Y. Li, X. Gao, C. Cao, Y. Tao, J. Lin, and T. Jiang. Microporous zeolite supported Cr(acac)3/PNP catalysts for ethylene tetramerization: Influence of supported patterns and confinement on reaction performance. J. Mol. Catal., A: Chem., 2014, 390, 152-158. https://doi.org/10.1016/j.molcata.2014.03.020

    Article  CAS  Google Scholar 

  9. H. Shao, J. Wang, R. Wang, L. Song, X. Guo, and T. Jiang. Ethylene oligomerization in zeolite-grafted Cr(III)-diphosphinoamine catalysts using triisobutylaluminium as cocatalyst: Change from dimerization to trimerization due to confinement effect. Appl. Catal., A, 2017, 544, 154-160. https://doi.org/10.1016/j.apcata.2017.07.021

    Article  CAS  Google Scholar 

  10. H. Lee and S. H. Hong. Polyhedral oligomeric silsesquioxane-conjugated bis(diphenylphosphino)amine ligand for chromium(III) catalyzed ethylene trimerization and tetramerization. Appl. Catal., A, 2018, 560, 21-27. https://doi.org/10.1016/j.apcata.2018.04.030

    Article  CAS  Google Scholar 

  11. N. Kathewad, M. C. Anagha, N. Parvin, S. Parambath, P. Parameswaran, and S. Khan. Facile Buchwald-Hartwig coupling of sterically encumbered substrates effected by PNP ligands. Dalton Trans., 2019, 48(8), 2730-2734. https://doi.org/10.1039/c9dt00159j

    Article  CAS  PubMed  Google Scholar 

  12. V. Vece, K. C. Szeto, M. O. Charlin, P. Rouge, A. De Mallmann, M. Taam, P.-Y. Dugas, M. Lansalot, F. D′Agosto, and M. Taoufik. Bis-N,N-aminophosphine (PNP) crosslinked poly(p-tert-butyl styrene) particles: A new support for heterogeneous palladium catalysts for Suzuki coupling reactions. Catal. Commun., 2019, 129, 105715. https://doi.org/10.1016/j.catcom.2019.105715

    Article  CAS  Google Scholar 

  13. M. Aydemir, N. Meric, C. Kayan, F. Ok, and A. Baysal. Rhodium-catalyzed transfer hydrogenation with functionalized bis(phosphino)amine ligands. Inorg. Chim. Acta, 2013, 398, 1-10. https://doi.org/10.1016/j.ica.2012.12.005

    Article  CAS  Google Scholar 

  14. F. Ok, M. Aydemir, F. Durap, and A. Baysal. Novel half-sandwich η5-Cp*-rhodium(III) and η5-Cp*-ruthenium(II) complexes bearing bis(phosphino)amine ligands and their use in the transfer hydrogenation of aromatic ketones. Appl. Organomet. Chem., 2014, 28(1), 38-43. https://doi.org/10.1002/aoc.3068

    Article  CAS  Google Scholar 

  15. N. Cloete, H. G. Visser, I. Engelbrecht, M. J. Overett, W. F. Gabrielli, and A. Roodt. Ethylene tri- and tetramerization: a steric parameter selectivity switch from X-ray crystallography and computational analysis. Inorg. Chem., 2013, 52(5), 2268-2270. https://doi.org/10.1021/ic302578a

    Article  CAS  PubMed  Google Scholar 

  16. V. W.-W. Yam, E. C.-C. Cheng, and Z.-Y. Zhou. A highly soluble luminescent decanuclear gold(I) complex with a propeller-shaped structure. Angew. Chem. Int. Ed. 2000, 39(9), 1683-1685, https://doi.org/10.1002/(SICI)1521-3773(20000502)39:9<1683::AID-ANIE1683>3.0.CO;2-1; Angew. Chem., 2000, 112(9), 1749-1751. https://doi.org/10.1002/(sici)1521-3757(20000502)112:9<1749::aid-ange1749>3.0.co;2-q

    Article  Google Scholar 

  17. S. Pal, N. Kathewad, R. Pant, and S. Khan. Synthesis, characterization, and luminescence studies of gold(I) complexes with PNP- and PNB-based ligand systems. Inorg. Chem., 2015, 54(21), 10172-10183. https://doi.org/10.1021/acs.inorgchem.5b01046

    Article  CAS  PubMed  Google Scholar 

  18. T. S. Sukhikh, R. M. Khisamov, D. A. Bashirov, V. Y. Komarov, M. S. Molokeev, A. A. Ryadun, E. Benassi, and S. N. Konchenko. Tuning of the coordination and emission properties of 4-amino-2,1,3-benzothiadiazole by introduction of diphenylphosphine group. Cryst. Growth Des., 2020, 20(9), 5796-5807. https://doi.org/10.1021/acs.cgd.0c00406

    Article  CAS  Google Scholar 

  19. A. M. Kuchkaev, A. M. Kuchkaev, K. R. Khayarov, E. M. Zueva, A. B. Dobrynin, D. R. Islamov, and D. G. Yakhvarov. PNP ligands in cobalt-mediated activation and functionalization of white phosphorus. Angew. Chem. Int. Ed. 2022, 61(47), e202210973, https://doi.org/10.1002/anie.202210973; Angew. Chem., 2022, 134(47), e202210973. https://doi.org/10.1002/ange.202210973

    Article  PubMed  Google Scholar 

  20. Z. Xiao, M. Natarajan, W. Zhong, and X. Liu. Probing into the electrochemistry of four nickel(II) and cobalt(II) complexes with azadiphosphine ligands (PNP) and their catalysis on proton reduction. Electrochim. Acta, 2020, 340, 135998. https://doi.org/10.1016/j.electacta.2020.135998

    Article  CAS  Google Scholar 

  21. S. C. Eady, T. Breault, L. Thompson, and N. Lehnert. Highly functionalizable penta-coordinate iron hydrogen production catalysts with low overpotentials. Dalton Trans., 2016, 45(3), 1138-1151. https://doi.org/10.1039/c5dt03744a

    Article  CAS  PubMed  Google Scholar 

  22. APEX2 (Version 2.1), SAINTPlus. Data Reduction and Correction Program (Version 7.31A). Madison, Wisconsin, USA: Bruker Advansed X-ray Solutions, 2006.

  23. G. M. Sheldrick. SADABS, Program for empirical X-ray absorption correction. Bruker-Nonius, 1990-2004.

  24. G. M. Sheldrick. Crystal structure refinement with SHELXL. Acta Crystallogr., Sect. C: Struct. Chem., 2015, 71(1), 3-8. https://doi.org/10.1107/s2053229614024218

    Article  Google Scholar 

  25. G. M. Sheldrick. A short history of SHELX. Acta Crystallogr., Sect. A: Found. Crystallogr., 2008, 64(1), 112-122. https://doi.org/10.1107/s0108767307043930

    Article  Google Scholar 

  26. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, and H. Puschmann. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr., 2009, 42(2), 339-341. https://doi.org/10.1107/s0021889808042726

    Article  CAS  Google Scholar 

  27. F. Cecconi, C. A. Ghilardi, S. Midollini, and A. Orlandini. A tetraphosphorus chain as part of a P8-containing ligand. Synthesis and properties of the η4-phosphabutadiene cobalt complex [Co(Ph2PCH2P(Ph)2P4P(Ph)2CH2PPh2)]BF4 and of its carbonyl derivatives {[Co(Ph2PCH2P(Ph)2P4P(Ph)2CH2PPh2)][Cr(CO)5]2}BF4 and {[Co(Ph2PCH2P(Ph)2P4P(Ph)2CH2PPh2)][W(CO)5]}Y (Y = BPh4, BF4). X-ray crystal structure of [Co(Ph2PCH2P(Ph)2P4P(Ph)2CH2PPh2)]BF4. Inorg. Chem., 1986, 25(11), 1766-1770. https://doi.org/10.1021/ic00231a009

    Article  CAS  Google Scholar 

  28. D. Yakhvarov, P. Barbaro, L. Gonsalvi, S. Mañas Carpio, S. Midollini, A. Orlandini, M. Peruzzini, O. Sinyashin, and F. Zanobini. A snapshot of P4 tetrahedron opening: Rh- and Ir-mediated activation of white phosphorus. Angew. Chem. Int. Ed. 2006, 45(25), 4182-4185, https://doi.org/10.1002/anie.200601048; Angew. Chem., 2006, 118(25), 4288-4291. https://doi.org/10.1002/ange.200601048

    Article  Google Scholar 

  29. D. Yakhvarov, M. Peruzzini, M. Caporali, L. Gonsalvi, S. Midollini, A. Orlandini, Y. Ganushevich, and O. Sinyashin. Bimetallic activation of white phosphorus. Phosphorus, Sulfur Silicon Relat. Elem., 2008, 183(2/3), 487-493. https://doi.org/10.1080/10426500701761516

    Article  CAS  Google Scholar 

Download references

Funding

This work was funded by a Grant of the President of the Russian Federation for the support of leading scientific schools of the Russian Federation (project No. 4078.2022.1.3). The XRD, mass spectrometry, and elemental analysis studies were conducted on the equipment of CSF-SAC FRC KSC RAS within the State Assignment for FRC KSC RAS.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Airat M. Kuchkaev or D. G. Yakhvarov.

Ethics declarations

The authors declare that they have no conflicts of interests.

Additional information

Russian Text © The Author(s), 2023, published in Zhurnal Strukturnoi Khimii, 2023, Vol. 64, No. 5, 110096.https://doi.org/10.26902/JSC_id110096

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuchkaev, A., Kuchkaev, A., Ivanov, A.S. et al. Structural Features of Complexes [Co(dppaPh)2(CH3CN)2](BF4)2 and [Co(dppaPh)21-P4)]BF4 (dppaPh = N,N-bis(Diphenylphosphino)Aniline). J Struct Chem 64, 853–858 (2023). https://doi.org/10.1134/S0022476623050049

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476623050049

Keywords

Navigation