Skip to main content
Log in

Synthesis, Characterization and Hirshfeld Surface Analysis of Some Thiosemicarbazones Containing a Five-Membered Ring

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Thiosemicarbazones, which are multidentate ligands, are considered as one of the most important classes of organic compounds due to their broad spectrum of pharmacological effects and their ability to coordinate easily with metal ions. Four thiosemicarbazones, furan-2-carbaldehyde-N-methyl thiosemicarbazone (Hfmtsc), thiophene-2-acetaldehyde thiosemicarbazone (Hattsc), thiophene-2-acetaldehyde-N-methyl thiosemicarbazone (Hatmtsc) and thiophene-2-acetaldehyde-N-ethyl thiosemicarbazone (Hatetsc) were successfully prepared via condensation reaction using substituted aldehyde and (un)substituted thiosemicarbazides. They were characterized by melting point, elemental analysis, molar conductivity, FTIR, UV-Vis, 1H and 13C NMR spectroscopic techniques. The crystal structure of them was determined by using single crystal X-ray diffraction study. Intermolecular interactions were investigated by Hirshfeld surface analysis. Molecular structure of compounds was stabilized by N–H⋯S, C–H⋯S, N–H⋯O and C–H⋯O interactions. In each compound, the molecules are connected into \(R_{2}^{2}(8)\) dimers via pairs of N–H⋯S interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

REFERENCES

  1. J. S. Casas, M. S. Garcı́a-Tasende, and J. Sordo. Main group metal complexes of semicarbazones and thiosemicarbazones. A structural review. Coord. Chem. Rev., 2000, 209(1), 197-261. https://doi.org/10.1016/s0010-8545(00)00363-5

    Article  CAS  Google Scholar 

  2. T. S. Lobana, R. Sharma, G. Bawa, and S. Khanna. Bonding and structure trends of thiosemicarbazone derivatives of metals - An overview. Coord. Chem. Rev., 2009, 253(7/8), 977-1055. https://doi.org/10.1016/j.ccr.2008.07.004

    Article  CAS  Google Scholar 

  3. K. Bajaj, R. M. Buchanan, and C. A. Grapperhaus. Antifungal activity of thiosemicarbazones, bis(thiosemicarbazones), and their metal complexes. J. Inorg. Biochem., 2021, 225, 111620. https://doi.org/10.1016/j.jinorgbio.2021.111620

    Article  CAS  PubMed  Google Scholar 

  4. G. L. Parrilha, R. G. dos Santos, and H. Beraldo. Applications of radiocomplexes with thiosemicarbazones and bis(thiosemicarbazones) in diagnostic and therapeutic nuclear medicine. Coord. Chem. Rev., 2022, 458, 214418. https://doi.org/10.1016/j.ccr.2022.214418

    Article  CAS  Google Scholar 

  5. R. Venkatraman, H. Ameera, L. Sitole, E. Ellis, F. R. Fronczek, and E. J. Valente. Structures of eight thio(semi)carbazones derived from 2-acetylpyrazine, 2-acetythiazole and acetophenone. J. Chem. Crystallogr., 2009, 39(10), 711-718. https://doi.org/10.1007/s10870-009-9541-0

    Article  CAS  Google Scholar 

  6. R. C. Clark and J. S. Reid. The analytical calculation of absorption in multifaceted crystals. Acta Crystallogr., Sect. A: Found. Crystallogr., 1995, 51(6), 887-897. https://doi.org/10.1107/s0108767395007367

    Article  Google Scholar 

  7. G. M. Sheldrick. SHELXT - Integrated space-group and crystal-structure determination. Acta Crystallogr., Sect. A: Found. Adv., 2015, 71(1), 3-8. https://doi.org/10.1107/s2053273314026370

    Article  Google Scholar 

  8. G. M. Sheldrick. SHELXT - Integrated space-group and crystal-structure determination. Acta Crystallogr., Sect. A: Found. Adv., 2015, 71(1), 3-8. https://doi.org/10.1107/s2053273314026370

    Article  Google Scholar 

  9. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, and H. Puschmann. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr., 2009, 42(2), 339-341. https://doi.org/10.1107/s0021889808042726

    Article  CAS  Google Scholar 

  10. I. I. Ozturk, E. T. Sirinkaya, M. Cakmak, M. Gürgan, D. Ceyhan, N. Panagiotou, and A. J. Tasiopoulos. Structural and biological features of bismuth(III) halide complexes with heterocyclic thioamides. J. Mol. Struct., 2021, 1227, 129730. https://doi.org/10.1016/j.molstruc.2020.129730

    Article  CAS  Google Scholar 

  11. M. A. Spackman and D. Jayatilaka. Hirshfeld surface analysis. CrystEngComm, 2009, 11(1), 19-32. https://doi.org/10.1039/b818330a

    Article  CAS  Google Scholar 

  12. J. J. McKinnon, D. Jayatilaka, and M. A. Spackman. Towards quantitative analysis of intermolecular interactions with Hirshfeld surfaces. Chem. Commun., 2007, (37), 3814. https://doi.org/10.1039/b704980c

    Article  Google Scholar 

  13. M. J. Turner, J. J. MacKinnon, S. K. Wolff, D. J. Grimwood, P. R. Spackman, D. Jayatilaka, and M. A. Spackman. Crystal Explorer 17.5. Perth, Australia: University of Western Australia, 2017.

  14. O. Aygun, A. M. Grześkiewicz, C. N. Banti, S. K. Hadjikakou, M. Kubicki, and I. I. Ozturk. Monomeric octahedral bismuth(III) benzaldehyde-N1-alkyl thiosemicarbazones: Synthesis, characterization and biological properties. Polyhedron, 2022, 215, 115683. https://doi.org/10.1016/j.poly.2022.115683

    Article  CAS  Google Scholar 

  15. K. Turk, A. M. Grześkiewicz, C. N. Banti, S. K. Hadjikakou, M. Kubicki, and I. I. Ozturk. Synthesis, characterization, and biological properties of mono-, di- and poly-nuclear bismuth(III) halide complexes containing thiophene-2-carbaldehyde thiosemicarbazones. J. Inorg. Biochem., 2022, 237, 111987. https://doi.org/10.1016/j.jinorgbio.2022.111987

    Article  CAS  PubMed  Google Scholar 

  16. I. I. Ozturk, C. N. Banti, S. K. Hadjikakou, N. Panagiotou, and A. J. Tasiopoulos. Bismuth(III) halide complexes of aromatic thiosemicarbazones: Synthesis, structural characterization and biological evaluation. Polyhedron, 2021, 208, 115388. https://doi.org/10.1016/j.poly.2021.115388

    Article  CAS  Google Scholar 

  17. I. Ali, W. A. Wani, and K. Saleem. Empirical formulae to molecular structures of metal complexes by molar conductance. Synth. React. Inorg., Met.-Org., Nano-Met. Chem., 2013, 43(9), 1162-1170. https://doi.org/10.1080/15533174.2012.756898

    Article  CAS  Google Scholar 

  18. J. George, V. S. Lekha, G. N. Rathika, Y. S. Mary, J. S. Al-Otaibi, and K. Rajesh. Synthesis, crystal structure and anti-tumour activity studies of 4-Tertiarybutylcyclohexanonethiosemicarbazone. J. Mol. Struct., 2022, 1265, 133490. https://doi.org/10.1016/j.molstruc.2022.133490

    Article  CAS  Google Scholar 

  19. A. Tadjarodi, S. Najjari, and B. Notash. Synthesis and crystal structure of a new thiosemicarbzone, acenaphthenequinone thiosemicarbazone mono methanol. Iran. J. Crystallogr. Mineral., 2015, 22(4), 109.

  20. R. Manikandan, P. Vijayan, P. Anitha, G. Prakash, P. Viswanathamurthi, R. J. Butcher, K. Velmurugan, and R. Nandhakumar. Synthesis, structure and in vitro biological activity of pyridoxal N(4)-substituted thiosemicarbazone cobalt(III) complexes. Inorg. Chim. Acta, 2014, 421, 80-90. https://doi.org/10.1016/j.ica.2014.05.035

    Article  CAS  Google Scholar 

  21. O. Ucar, A. M. Grześkiewicz, C. Banti, S. K. Hadjikakou, and I. I. Ozturk. Structural characterization and biological evaluation of antimony(III) and bismuth(III) complexes with imidazolidine-2-thione. J. Mol. Struct., 2021, 1235, 130270. https://doi.org/10.1016/j.molstruc.2021.130270

    Article  CAS  Google Scholar 

  22. M. S. Ali, F. A. El-Saied, M. M. Shakdofa, S. Karnik, and L. A. Jaragh-Alhadad. Synthesis and characterization of thiosemicarbazone metal complexes: Crystal structure, and antiproliferation activity against breast (MCF7) and lung (A549) cancers. J. Mol. Struct., 2023, 1274, 134485. https://doi.org/10.1016/j.molstruc.2022.134485

    Article  CAS  Google Scholar 

  23. A. D. Khalaji, G. Grivani, S. J. Akerdi, K. Gotoh, H. Ishida, and H. Mighani. Synthesis, spectroscopic characterization, crystal structures, and theoretical studies of (E)-2-(2,4-dimethoxybenzylidene)thiosemicarbazone and (E)-2-(2,5-dimethoxybenzylidene)thiosemicarbazone. Struct. Chem., 2010, 21(5), 995-1003. https://doi.org/10.1007/s11224-010-9637-3

    Article  CAS  Google Scholar 

  24. J. Garcı́a-Tojal, J. L. Pizarro, A. García-Orad, A. R. Pérez-Sanz, M. Ugalde, A. Alvarez Dı́az, J. L. Serra, M. I. Arriortua, and T. Rojo. Biological activity of complexes derived from thiophene-2-carbaldehyde thiosemicarbazone. Crystal structure of [Ni(C6H6N3S2)2]. J. Inorg. Biochem., 2001, 86(2/3), 627-633. https://doi.org/10.1016/s0162-0134(01)00210-0

    Article  PubMed  Google Scholar 

  25. P. N. Bourosh, M. D. Revenko, M. Gdaniec, E. F. Stratulat, and Y. A. Simonov. Molecular and crystal structure of quinoline-2-aldehyde thiosemicarbazone. J. Struct. Chem., 2009, 50(3), 510-513. https://doi.org/10.1007/s10947-009-0078-z

    Article  CAS  Google Scholar 

  26. S. Selvanayagam, M. Yogavel, V. Rajakannan, D. Velmurugan, S. Shanmuga Sundara Raj, and H.-K. Fun. 2-Methoxybenzaldehyde thiosemicarbazone. Acta Crystallogr., Sect. E: Struct. Rep. Online, 2002, 58(12), o1336-o1338. https://doi.org/10.1107/s160053680201961x

    Article  CAS  Google Scholar 

  27. J. Zhou, Y.-X. Wang, C.-L. Chen, and M.-X. Li. 2-Acetylpyrazine 4-methylthiosemicarbazone. Acta Crystallogr., Sect. E: Struct. Rep. Online, 2008, 64(1), o94. https://doi.org/10.1107/s160053680706285x

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ibrahim I. Ozturk.

Ethics declarations

The authors declare that they have no conflicts of interests.

Additional information

Text © The Author(s), 2023, published in Zhurnal Strukturnoi Khimii, 2023, Vol. 64, No. 5, 109673.https://doi.org/10.26902/JSC_id109673

Supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ozturk, I. Synthesis, Characterization and Hirshfeld Surface Analysis of Some Thiosemicarbazones Containing a Five-Membered Ring. J Struct Chem 64, 743–756 (2023). https://doi.org/10.1134/S0022476623050013

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476623050013

Keywords

Navigation