Skip to main content
Log in

Synthesis, Crystal Structures and Urease Inhibition of Zinc(II) and Copper(II) Complexes Derived from 2-Amino-N′-(1-(Pyridin-2-yl) Ethylidene)Benzohydrazide

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Two mononuclear zinc(II) and copper(II) complexes, [ZnBr(HL)(NCS)] (1) and [CuL2] (2), where HL and L are the ketone and enolate forms of 2-amino-N′-(1-(pyridin-2-yl)ethylidene)benzohydrazide (HL), have been prepared and characterized by elemental analyses, IR and UV-Vis spectroscopy, as well as single crystal X-ray diffraction studies. The Zn atom in complex 1 is in distorted square pyramidal coordination, with the pyridine N, imino N and carbonyl O atoms of the hydrazone ligand HL and the N atom of the thiocyanate ligand in the basal plane, and with the Br atom at the apical position. The Cu atom in complex 2 is in distorted octahedral coordination, with the pyridine N, imino N and enolate O atoms of one hydrazone ligand L, and the imino N atom of the other hydrazone ligand L in the equatorial plane, and with the pyridine N and enolate O atoms of the other hydrazone ligand L at the axial positions. The hydrazone and the complexes have been assayed for their Jack bean urease activity. As a result, the copper complex has effective urease inhibitory activity with IC50 = 11.9±1.3 μmol/L. Molecular docking study was performed to investigate the interaction between the complex molecule and the enzyme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

REFERENCES

  1. A. Ray, C. Nkwonta, P. Forrestal, M. Danaher, K. Richards, T. OCallaghan, S. Hogan, and E. Cummins. Current knowledge on urease and nitrification inhibitors technology and their safety. Rev. Environ. Health, 2021, 36(4), 477-491. https://doi.org/10.1515/reveh-2020-0088

    Article  CAS  PubMed  Google Scholar 

  2. T. Lan, Y. Huang, X. Song, O. Deng, W. Zhou, L. Luo, X. Tang, J. Zeng, G. Chen, and X. Gao. Biological nitrification inhibitor co-application with urease inhibitor or biochar yield different synergistic interaction effects on NH3 volatilization, N leaching, and N use efficiency in a calcareous soil under rice cropping. Environ. Pollut., 2022, 293, 118499. https://doi.org/10.1016/j.envpol.2021.118499

    Article  CAS  PubMed  Google Scholar 

  3. M. P. Byrne, J. T. Tobin, P. J. Forrestal, M. Danaher, C. G. Nkwonta, K. Richards, E. Cummins, S. A. Hogan, and T. F. OCallaghan. Urease and nitrification inhibitors – as mitigation tools for greenhouse gas emissions in sustainable dairy systems: A review. Sustainability, 2020, 12(15), 6018. https://doi.org/10.3390/su12156018

    Article  CAS  Google Scholar 

  4. A. T. Fiori-Duarte, R. P. Rodrigues, R. R. Kitagawa, and D. F. Kawano. Insights into the design of inhibitors of the urease enzyme – a major target for the treatment of helicobacter pylori infections. Curr. Med. Chem., 2020, 27(23), 3967-3982. https://doi.org/10.2174/0929867326666190301143549

    Article  CAS  Google Scholar 

  5. M. Taha, N. H. Ismail, S. Imran, A. Wadood, F. Rahim, and M. Riaz. Synthesis of potent urease inhibitors based on disulfide scaffold and their molecular docking studies. Bioorg. Med. Chem., 2015, 23(22), 7211-7218. https://doi.org/10.1016/j.bmc.2015.10.017

    Article  CAS  Google Scholar 

  6. G. I. Pérez-Pérez, C. B. Gower, and M. J. Blaser. Effects of cations on Helicobacter pylori urease activity, release, and stability. Infect. Immun., 1994, 62(1), 299-302. https://doi.org/10.1128/iai.62.1.299-302.1994

    Article  PubMed  PubMed Central  Google Scholar 

  7. R. Mamidala, S. R. S. Bhimathati, and A. Vema. Discovery of novel dihydropyrimidine and hydroxamic acid hybrids as potent Helicobacter pylori urease inhibitors. Bioorg. Chem., 2021, 114, 105010. https://doi.org/10.1016/j.bioorg.2021.105010

    Article  CAS  PubMed  Google Scholar 

  8. S. Iqbal, A. Khan, R. Nazir, S. Kiran, S. Perveen, K. M. Khan, and M. I. Choudhary. Synthesis of -ketosulfone derivatives as new non-cytotoxic urease inhibitors in vitro. Med. Chem. (Sharjah, United Arab Emirates), 2020, 16(2), 244-255. https://doi.org/10.2174/1573406415666190415163309

    Article  CAS  Google Scholar 

  9. S. Daud, O.-R. Abid, A. Sardar, B. A. Shah, M. Rafiq, A. Wadood, M. Ghufran, W. Rehman, Zain-ul-Wahab, F. Iftikhar, R. Sultana, H. Daud, and B. Niaz. Design, synthesis, in vitro evaluation, and docking studies on ibuprofen derived 1,3,4-oxadiazole derivatives as dual -glucosidase and urease inhibitors. Med. Chem. Res., 2022, 31(2), 316-336. https://doi.org/10.1007/s00044-021-02814-6

    Article  CAS  Google Scholar 

  10. M. Talebi, E. Hamidian, F. Niasari-Naslaji, S. Rahmani, F. S. Hosseini, S. Boumi, M. N. Montazer, M. Asadi, and M. Amanlou. Synthesis, molecular docking, and biological evaluation of nitroimidazole derivatives as potent urease inhibitors. Med. Chem. Res., 2021, 30(6), 1220-1229. https://doi.org/10.1007/s00044-021-02727-4

    Article  CAS  Google Scholar 

  11. M. A. S. Aslam, S. Mahmood, M. Shahid, A. Saeed, and J. Iqbal. Synthesis, biological assay in vitro and molecular docking studies of new Schiff base derivatives as potential urease inhibitors. Eur. J. Med. Chem., 2011, 46(11), 5473-5479. https://doi.org/10.1016/j.ejmech.2011.09.009

    Article  CAS  PubMed  Google Scholar 

  12. E. Menteşe, M. Emirik, and B. B. Sökmen. Design, molecular docking and synthesis of novel 5,6-dichloro-2-methyl-1H-benzimidazole derivatives as potential urease enzyme inhibitors. Bioorg. Chem., 2019, 86, 151-158. https://doi.org/10.1016/j.bioorg.2019.01.061

    Article  CAS  PubMed  Google Scholar 

  13. Z.-J. Chen, Y.-N. Chen, C.-N. Xu, S.-S. Zhao, Q.-Y. Cao, S.-S. Qian, J. Qin, and H.-L. Zhu. Synthesis, crystal structures, molecular docking, and in vitro biological activities evaluation of transition metal complexes with 4-(3,4-dichlorophenyl) piperazine-1-carboxylic acid. J. Mol. Struct., 2016, 1117, 293-299. https://doi.org/10.1016/j.molstruc.2016.03.084

    Article  CAS  Google Scholar 

  14. Z.-P. Xiao, Z.-Y. Peng, J.-J. Dong, R.-C. Deng, X.-D. Wang, H. Ouyang, P. Yang, J. He, Y.-F. Wang, M. Zhu, X.-C. Peng, W.-X. Peng, and H.-L. Zhu. Synthesis, molecular docking and kinetic properties of -hydroxy--phenylpropionyl-hydroxamic acids as Helicobacter pylori urease inhibitors. Eur. J. Med. Chem., 2013, 68, 212-221. https://doi.org/10.1016/j.ejmech.2013.07.047

    Article  CAS  PubMed  Google Scholar 

  15. B. Krajewska. Ureases I. Functional, catalytic and kinetic properties: A review. J. Mol. Catal. B: Enzym., 2009, 59(1-3), 9-21. https://doi.org/10.1016/j.molcatb.2009.01.003

    Article  CAS  Google Scholar 

  16. L. Habala, F. Devínsky, and A. E. Egger. Review: metal complexes as urease inhibitors. J. Coord. Chem., 2018, 71(7), 907-940. https://doi.org/10.1080/00958972.2018.1458228

    Article  CAS  Google Scholar 

  17. H. Pervez, M. Ahmad, S. Zaib, M. Yaqub, M. M. Naseer, and J. Iqbal. Synthesis, cytotoxic and urease inhibitory activities of some novel isatin-derived bis-Schiff bases and their copper(II) complexes. MedChemComm, 2016, 7(5), 914-923. https://doi.org/10.1039/c5md00529a

    Article  CAS  Google Scholar 

  18. H. Pervez, N. Khan, J. Iqbal, S. Zaib, M. Yaqub, and M. M. Naseer. Synthesis and in vitro bio-activity evaluation of N4-benzyl substituted 5-chloroisatin- 3-thiosemicarbazones as urease and glycation inhibitors. Acta Chim. Slov., 2018, 65(1), 108-118. https://doi.org/10.17344/acsi.2017.3649

    Article  CAS  Google Scholar 

  19. H. Zhao, X.-R. Liu, X. Wang, J. Hu, Y.-J. Cai, and Q.-A. Peng. Synthesis, crystal structures and urease inhibition of 4-bromo-N-(1-(pyridin-2-yl)ethylidene)benzohydrazide and its dinuclear copper(II) complex. Acta Chim. Slov., 2021, 68(4), 804-810. https://doi.org/10.17344/acsi.2021.6781

    Article  CAS  Google Scholar 

  20. S. Han and Y. Wang. Synthesis, characterization and crystal structures of Schiff base copper complexes with urease inhibitory activity. Acta Chim. Slov., 2021, 68(4), 961-969. https://doi.org/10.17344/acsi.2021.6965

    Article  CAS  Google Scholar 

  21. M. Ahmed, M. Imran, M. Muddassar, R. Hussain, M. U. Khan, S. Ahmad, M. Y. Mehboob, and S. Ashfaq. Benzenesulfonohydrazides inhibiting urease: Design, synthesis, their in vitro and in silico studies. J. Mol. Struct., 2020, 1220, 128740. https://doi.org/10.1016/j.molstruc.2020.128740

    Article  CAS  Google Scholar 

  22. F. Naz, Kanwal, M. Latif, U. Salar, K. M. Khan, M. Al-Rashida, I. Ali, B. Ali, M. Taha, and S. Perveen. 4-Oxycoumarinyl linked acetohydrazide Schiff bases as potent urease inhibitors. Bioorg. Chem., 2020, 105, 104365. https://doi.org/10.1016/j.bioorg.2020.104365

    Article  CAS  PubMed  Google Scholar 

  23. Q. Poladian, O. Şahin, T. Karakurt, B. İlhan-Ceylan, and Y. Kurt. A new zinc(II) complex with N2O2-tetradentate Schiff-base derived from pyridoxal-S-methylthiosemicarbazone: Synthesis, characterization, crystal structure, DFT, molecular docking and antioxidant activity studies. Polyhedron, 2021, 201, 115164. https://doi.org/10.1016/j.poly.2021.115164

    Article  CAS  Google Scholar 

  24. S. Mahato, N. Meheta, M. Kotakonda, M. Joshi, M. Shit, A. R. Choudhury, and B. Biswas. Synthesis, structure, polyphenol oxidase mimicking and bactericidal activity of a zinc-Schiff base complex. Polyhedron, 2021, 194, 114933. https://doi.org/10.1016/j.poly.2020.114933

    Article  CAS  Google Scholar 

  25. N. Kordestani, H. Amiri Rudbari, A. R. Fernandes, L. R. Raposo, A. Luz, P. V. Baptista, G. Bruno, R. Scopelliti, Z. Fateminia, N. Micale, N. Tumanov, J. Wouters, A. Abbasi Kajani, and A.-K. Bordbar. Copper(II) complexes with tridentate halogen-substituted Schiff base ligands: Synthesis, crystal structures and investigating the effect of halogenation, leaving groups and ligand flexibility on antiproliferative activities. Dalton Trans., 2021, 50(11), 3990-4007. https://doi.org/10.1039/d0dt03962d

    Article  CAS  PubMed  Google Scholar 

  26. A. Pradhan, S. Haldar, K. B. Mallik, M. Ghosh, M. Bera, N. Sepay, D. Schollmeyer, S. K. Ghatak, S. Roy, and S. Saha. Mixed phenoxo and azido bridged dinuclear nickel(II) and copper(II) compounds with N,N,O-donor Schiff bases: Synthesis, structure, DNA binding, DFT and molecular docking study. Inorg. Chim. Acta, 2019, 484, 197-205. https://doi.org/10.1016/j.ica.2018.09.026

    Article  CAS  Google Scholar 

  27. Y. Wang. Synthesis, crystal structures, and urease inhibitory activity of Schiff base copper and nickel complexes. J. Struct. Chem., 2021, 62(11), 1667-1677. https://doi.org/10.1134/s0022476621110020

    Article  CAS  Google Scholar 

  28. N. Wang, H.-Y. Liu, and M.-Z. Zhou. Syntheses, characterization, and antibacterial properties of copper(II) complexes derived from fluoro-containing Schiff bases. J. Struct. Chem., 2021, 62(2), 321-329. https://doi.org/10.1134/s0022476621020177

    Article  CAS  Google Scholar 

  29. C. H. Kane, D. Tinguiano, F. B. Tamboura, I. E. Thiam, A. H. Barry, M. Gaye, and P. Retailleau. Synthesis and characterization of novel M(II) (M = Mn(II), Ni(II), Cu(II) or Zn(II)) complexes with tridentate N2,O-donor ligand (E)-2-amino-N-[1-(pyridin-2-yl)-ethylidene]benzohydrazide. Bull. Chem. Soc. Ethiop., 2016, 30(1), 101. https://doi.org/10.4314/bcse.v30i1.9

    Article  CAS  Google Scholar 

  30. R. S. Veerapur, K. B. Gudasi, M. Sairam, R. V. Shenoy, M. Netaji, K. V. S. N. Raju, B. Sreedhar, and T. M. Aminabhavi. Novel sodium alginate composite membranes prepared by incorporating cobalt(III) complex particles used in pervaporation separation of water–acetic acid mixtures at different temperatures. J. Mater. Sci., 2007, 42(12), 4406-4417. https://doi.org/10.1007/s10853-006-0652-0

    Article  CAS  Google Scholar 

  31. C. Huang, J. Wu, D.-M. Chen, Q.-L. Zhang, and B.-X. Zhu. Syntheses and crystal structures of Cd(II) and Zn(II) complexes containing 2-acetylpyridine-o-aminobenzoylhydrazone ligand. Chin. J. Inorg. Chem., 2015, 31(1), 109-113.

  32. L. Mazur, K. N. Jarzembska, R. Kamiński, K. Woźniak, E. Pindelska, and M. Zielińska-Pisklak. Substituent and solvent effects on intermolecular interactions in crystals of N-acylhydrazone derivatives: Single-crystal X-ray, solid-state NMR, and computational studies. Cryst. Growth Des., 2014, 14(5), 2263-2281. https://doi.org/10.1021/cg401866x

    Article  CAS  Google Scholar 

  33. Bruker, SMART and SAINT. Madison, Wisconsin, USA: Bruker AXS Inc., 2002.

  34. G. M. Sheldrick. SADABS. Göttingen, Germany: University of Göttingen, 1996.

  35. G. M. Sheldrick. Crystal structure refinement with SHELXL. Acta Crystallogr., Sect. C: Struct. Chem., 2015, 71(1), 3-8. https://doi.org/10.1107/s2053229614024218

    Article  Google Scholar 

  36. W.-J. Mao, P.-C. Lv, L. Shi, H.-Q. Li, and H.-L. Zhu. Synthesis, molecular docking and biological evaluation of metronidazole derivatives as potent Helicobacter pylori urease inhibitors. Bioorg. Med. Chem., 2009, 17(21), 7531-7536. https://doi.org/10.1016/j.bmc.2009.09.018

    Article  CAS  Google Scholar 

  37. B. Krajewska and W. Zaborska. Jack bean urease: The effect of active-site binding inhibitors on the reactivity of enzyme thiol groups. Bioorg. Chem., 2007, 35(5), 355-365. https://doi.org/10.1016/j.bioorg.2007.02.002

    Article  CAS  PubMed  Google Scholar 

  38. P. Singh, D. P. Singh, K. Tiwari, M. Mishra, A. K. Singh, and V. P. Singh. Synthesis, structural investigations and corrosion inhibition studies on Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) complexes with 2-amino-benzoic acid (phenyl-pyridin-2-yl-methylene)-hydrazi. RSC Adv., 2015, 5(56), 45217-45230. https://doi.org/10.1039/c4ra11929k

    Article  CAS  Google Scholar 

  39. S.-D. Su, J.-X. Li, F. Xu, C.-X. Wang, K. Wang, Y. Li, S.-H. Zhang, X.-Q. Zhang, Y.-Q. Zhang, and F.-P. Liang. DyIII single-molecule magnets from ligands incorporating both amine and acylhydrazine Schiff base groups: the centrosymmetric {Dy2} displaying dual magnetic relaxation behaviors. Dalton Trans., 2020, 49(44), 15739-15749. https://doi.org/10.1039/c9dt04434e

    Article  CAS  PubMed  Google Scholar 

  40. A. W. Addison, T. N. Rao, J. Reedijk, J. van Rijn, and G. C. Verschoor. Synthesis, structure, and spectroscopic properties of copper(II) compounds containing nitrogen–sulphur donor ligands; the crystal and molecular structure of aqua[1,7-bis(N-methylbenzimidazol-2-yl)-2,6-dithiaheptane]copper(II) perchlorate. J. Chem. Soc., Dalton Trans., 1984, (7), 1349-1356. https://doi.org/10.1039/dt9840001349

    Article  Google Scholar 

  41. A. A. R. Despaigne, J. G. da Silva, A. C. M. do Carmo, F. Sives, O. E. Piro, E. E. Castellano, and H. Beraldo. Copper(II) and zinc(II) complexes with 2-formylpyridine-derived hydrazones. Polyhedron, 2009, 28(17), 3797-3803. https://doi.org/10.1016/j.poly.2009.07.059

    Article  CAS  Google Scholar 

  42. M. Nandy, D. L. Hughes, G. M. Rosair, R. K. B. Singh, and S. Mitra. Synthesis, characterization, crystal structure, and DNA binding of two copper(II)–hydrazone complexes. J. Coord. Chem., 2014, 67(20), 3335-3353. https://doi.org/10.1080/00958972.2014.964697

    Article  CAS  Google Scholar 

  43. S. Shit, J. Chakraborty, B. Samanta, A. M. Z. Slawin, V. Gramlich, and S. Mitra. Three new coordination complexes of cobalt(III), manganese(II), and copper(II) with N,N,O-donor hydrazone ligands: syntheses and structural characterizations. Struct. Chem., 2009, 20(4), 633-642. https://doi.org/10.1007/s11224-009-9455-7

    Article  CAS  Google Scholar 

  44. H.-Q. Chang, L. Jia, J. Xu, Z.-Q. Xu, R.-H. Chen, W.-N. Wu, H.-Y. Bie, T.-F. Zhu, T. Ma, and Y. Wang. Syntheses, characterizations, antitumor activities and cell apoptosis induction of Cu(II), Zn(II) and Cd(II) complexes with hydrazone Schiff base derived from isonicotinohydrazide. Inorg. Chem. Commun., 2015, 57, 8-10. https://doi.org/10.1016/j.inoche.2015.04.010

    Article  CAS  Google Scholar 

  45. S. Basak, S. Sen, S. Banerjee, S. Mitra, G. Rosair, and M. T. G. Rodriguez. Three new pseudohalide bridged dinuclear Zn(II) Schiff base complexes: Synthesis, crystal structures and fluorescence studies. Polyhedron, 2007, 26(17), 5104-5112. https://doi.org/10.1016/j.poly.2007.07.025

    Article  CAS  Google Scholar 

  46. Y. Li, L. Xu, M. Duan, B. Zhang, Y. Wang, Y. Guan, J. Wu, C. Jing, and Z. You. Syntheses, characterization, crystal structures and Jack bean urease inhibitory activities of ZnII, CoII/III and NiII complexes derived from reduced Schiff base ligand. Polyhedron, 2019, 166, 146-152. https://doi.org/10.1016/j.poly.2019.03.051

    Article  CAS  Google Scholar 

  47. Y. Luo, J. Wang, B. Zhang, Y. Guan, T. Yang, X. Li, L. Xu, J. Wang, and Z. You. Syntheses, characterization and crystal structures of fluorine substituted Schiff base copper(II) and nickel(II) complexes with biological activity. J. Coord. Chem., 2020, 73(12), 1765-1777. https://doi.org/10.1080/00958972.2020.1795645

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. You.

Ethics declarations

The authors declare that they have no conflicts of interests.

Additional information

Text © The Author(s), 2023, published in Zhurnal Strukturnoi Khimii, 2023, Vol. 64, No. 3, 106985.https://doi.org/10.26902/JSC_id106985

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, J., Liang, P., Li, A. et al. Synthesis, Crystal Structures and Urease Inhibition of Zinc(II) and Copper(II) Complexes Derived from 2-Amino-N′-(1-(Pyridin-2-yl) Ethylidene)Benzohydrazide. J Struct Chem 64, 365–376 (2023). https://doi.org/10.1134/S0022476623030034

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476623030034

Keywords

Navigation