Skip to main content
Log in

AUTOCORRELATION FUNCTIONS OF TRANSLATIONAL AND ROTATIONAL VELOCITIES IN MOLECULAR DYNAMIC MODELS OF WATER AND THEIR SPECTRA

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Autocorrelation functions of the velocity of the center of mass of water molecules, translational velocity of hydrogen atoms in these molecules, and rotational velocity of the entire molecule are calculated by molecular dynamics. The spectra of these functions are obtained. The effect of temperature and pressure on these spectra is studied. It is established that the spectra reflect in detail the features of all types of motion: they clearly show the correlation between the rotation of the molecule and its motion and can well distinguish between individual molecular motions in the cage of the nearest neighbors and their participation in collective motions of different scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Notes

  1. * The Frenkel model was described in his famous book [25] but is rarely cited nowadays. Brazhkin et al. [26, 27] are the only ones who try to give new life to Frenkel's ideas on new material.

REFERENCES

  1. P. A. Egelstaff. An Introduction to the Liquid State. London: Academic Press, 1967.

  2. J. P. Boon and S. Yip. Molecular Hydrodynamics. New York: Dover, 1991.

  3. J. P. Hansen and I. R. McDonald. Theory of Simple Liquids. London: Academic Press, 2008.

  4. A. Rahman. Correlations in the motion of atoms in liquid argon. Phys. Rev., 1964, 136(2A), A405-A411. https://doi.org/10.1103/physrev.136.a405

    Article  Google Scholar 

  5. A. Rahman and F. H. Stillinger. Molecular dynamics study of liquid water. J. Chem. Phys., 1971, 55(7), 3336-3359. https://doi.org/10.1063/1.1676585

    Article  CAS  Google Scholar 

  6. F. H. Stillinger and A. Rahman. Improved simulation of liquid water by molecular dynamics. J. Chem. Phys., 1974, 60(4), 1545-1557. https://doi.org/10.1063/1.1681229

    Article  CAS  Google Scholar 

  7. U. Balucani, J. P. Brodholt, and R. Vallauri. Analysis of the velocity autocorrelation function of water. J. Phys. Condens. Matter, 1996, 8(34), 6139-6144. https://doi.org/10.1088/0953-8984/8/34/004

    Article  CAS  Google Scholar 

  8. D. A. Zichi and P. J. Rossky. Solvent molecular dynamics in regions of hydrophobic hydration. J. Chem. Phys., 1986, 84(5), 2814-2822. https://doi.org/10.1063/1.450307

    Article  CAS  Google Scholar 

  9. N. Choudhury and B. M. Pettitt. Dynamics of water trapped between hydrophobic solutes. J. Phys. Chem. B, 2005, 109(13), 6422-6429. https://doi.org/10.1021/jp045439i

    Article  CAS  PubMed  Google Scholar 

  10. N. Choudhury. Dynamics of water in solvation shells and intersolute regions of C60: A molecular dynamics simulation study. J. Phys. Chem. C, 2007, 111(6), 2565-2572. https://doi.org/10.1021/jp066883j

    Article  CAS  Google Scholar 

  11. S. Pal, S. Balasubramanian, and B. Bagchi. Dynamics of bound and free water in an aqueous micellar solution: Analysis of the lifetime and vibrational frequencies of hydrogen bonds at a complex interface. Phys. Rev. E, 2003, 67(6), 061502. https://doi.org/10.1103/physreve.67.061502

    Article  Google Scholar 

  12. B. Lovrinčević, M. Požar, and M. Balić. Dynamics of urea-water mixtures studied by molecular dynamics simulation. J. Mol. Liq., 2020, 300, 112268. https://doi.org/10.1016/j.molliq.2019.112268

    Article  CAS  Google Scholar 

  13. C. Rocchi, A. R. Bizzarri, and S. Cannistraro. Water dynamical anomalies evidenced by molecular-dynamics simulations at the solvent-protein interface. Phys. Rev. E, 1998, 57(3), 3315-3325. https://doi.org/10.1103/physreve.57.3315

    Article  CAS  Google Scholar 

  14. M. Tarek and D. J. Tobias. The Dynamics of protein hydration water: A quantitative comparison of molecular dynamics simulations and neutron-scattering experiments. Biophys. J., 2000, 79(6), 3244-3257. https://doi.org/10.1016/s0006-3495(00)76557-x

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. S. G. Dastidar and C. Mukhopadhyay. Structure, dynamics, and energetics of water at the surface of a small globular protein: A molecular dynamics simulation. Phys. Rev. E, 2003, 68(2), 021921. https://doi.org/10.1103/physreve.68.021921

    Article  Google Scholar 

  16. S. Chakraborty, S. K. Sinha, and S. Bandyopadhyay. Low-frequency vibrational spectrum of water in the hydration layer of a protein: A molecular dynamics simulation study. J. Phys. Chem. B, 2007, 111(48), 13626-13631. https://doi.org/10.1021/jp0746401

    Article  CAS  PubMed  Google Scholar 

  17. S. Capponi, S. H. White, D. J. Tobias, and M. Heyden. Structural relaxation processes and collective dynamics of water in biomolecular environments. J. Phys. Chem. B, 2019, 123(2), 480-486. https://doi.org/10.1021/acs.jpcb.8b12052

    Article  CAS  Google Scholar 

  18. V. P. Voloshin and Y. I. Naberukhin. Autocorrelation functions of the translational and rotational velocities of water. Russ. J. Phys. Chem. A, 2022, 96(7), 1415-1418. https://doi.org/10.1134/s0036024422070342

    Article  CAS  Google Scholar 

  19. S. Plimpton. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys., 1995, 117(1), 1-19. https://doi.org/10.1006/jcph.1995.1039

    Article  CAS  Google Scholar 

  20. J. L. F. Abascal and C. Vega. A general purpose model for the condensed phases of water: TIP4P/2005. J. Chem. Phys., 2005, 123(23), 234505. https://doi.org/10.1063/1.2121687

    Article  CAS  PubMed  Google Scholar 

  21. V. P. Voloshin and Y. I. Naberukhin. Description of molecule rotation in computer models of water using quaternions. RENSIT, 2020, 12(1), 69-80. https://doi.org/10.17725/rensit.2020.12.069 [In Russian]

    Article  Google Scholar 

  22. V. P. Voloshin and Y. I. Naberukhin. Hydrogen bond lifetime distributions in computer-simulated water. J. Struct. Chem., 2009, 50(1), 78-89. https://doi.org/10.1007/s10947-009-0010-6

    Article  CAS  Google Scholar 

  23. V. P. Voloshin and Y. I. Naberukhin. Proper and improper hydrogen bonds in liquid water. J. Struct. Chem., 2016, 57(3), 497-506. https://doi.org/10.1134/s0022476616030112

    Article  CAS  Google Scholar 

  24. G. E. Walrafen. In: Water. A Comprehensive Treatise. Franks F., ed. Plenum, New York, 1972, 1, 151.

  25. J. Frenkel. Kinetic Theory of Liquids. Oxford: The Clarendon Press, 1946.

  26. V. V Brazhkin, A. G. Lyapin, V. N. Ryzhov, K. Trachenko, Y. D. Fomin, and E. N. Tsiok. Where is the supercritical fluid on the phase diagram? Phys. – Usp., 2012, 55(11), 1061-1079. https://doi.org/10.3367/ufne.0182.201211a.1137

    Article  CAS  Google Scholar 

  27. V. V. Brazhkin, Y. D. Fomin, A. G. Lyapin, V. N. Ryzhov, E. N. Tsiok, and K. Trachenko. “Liquid-gas” transition in the supercritical region: fundamental changes in the particle dynamics. Phys. Rev. Lett., 2013, 111(14), 145901. https://doi.org/10.1103/physrevlett.111.145901

    Article  CAS  PubMed  Google Scholar 

  28. V. P. Voloshin. Correlation of translational and rotational motion of water molecules in molecular dynamic models. RENSIT, 2021, 13(2), 141-148. https://doi.org/10.17725/rensit.2021.13.141 [In Russian]

    Article  Google Scholar 

  29. F. Hirata and P. J. Rossky. A realization of “V structure” in liquid water. J. Chem. Phys., 1981, 74(12), 6867-6874. https://doi.org/10.1063/1.441096

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Voloshin.

Ethics declarations

The authors declare that they have no conflicts of interests.

Additional information

Russian Text © The Author(s), 2023, published in Zhurnal Strukturnoi Khimii, 2023, Vol. 64, No. 2, 105637.https://doi.org/10.26902/JSC_id105637

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Voloshin, V.P., Naberukhin, Y.I. AUTOCORRELATION FUNCTIONS OF TRANSLATIONAL AND ROTATIONAL VELOCITIES IN MOLECULAR DYNAMIC MODELS OF WATER AND THEIR SPECTRA. J Struct Chem 64, 208–215 (2023). https://doi.org/10.1134/S0022476623020051

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476623020051

Keywords

Navigation