Skip to main content
Log in

QUANTUM CHEMICAL SIMULATION OF 2,4,7-TRINITRO-9H-FLUORENE-9-ONE CHARGE-TRANSFER COMPLEXES WITH NONLINEAR POLYCYCLIC AROMATIC HYDROCARBONS. CRYSTAL AND MOLECULAR STRUCTURE OF THE (1:1) 2,4,7-TRINITRO-9H- FLUORENE-9-ONE COMPLEX WITH PHENANTHRENE

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Structure and properties of 2,4,7-trinitro-9H-fluorene-9-one charge-transfer complexes with non-linear polycyclic aromatic hydrocarbons acting as donors are studied using quantum chemical calculations in the density functional theory approximation. Formation energies, average distances between the donor and the acceptor planes, and charge transfer from the donor to the acceptor in these complexes are calculated. The crystal and molecular structure of the (1:1) 2,4,7-trinitro-9H-fluorene-9-one complex with phenanthrene (C13H5N3O7·C14H10) is determined by X-ray diffraction analysis. In the crystal of the complex, the donor and acceptor molecules form mixed {–DADA–} stacks. It is shown that the relative arrangement of the donor and the acceptor in the crystal coincides with that in the most energetically favorable model predicted by calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

REFERENCES

  1. J. Ferraris, D. O. Cowan, V. Walatka, and J. H. Perlstein. J. Am. Chem. Soc., 1973, 95, 948. https://doi.org/10.1021/ja00784a066

    Article  CAS  Google Scholar 

  2. D. Jérome. Chem. Rev., 2004, 104, 5565. https://doi.org/10.1021/cr030652g

    Article  CAS  Google Scholar 

  3. H. Alves, A. S. Molinari, H. X. Xie, and A. F. Morpurgo. Nat. Mater., 2008, 7, 574. https://doi.org/10.1038/nmat2205

    Article  CAS  Google Scholar 

  4. A. Radvakova, O. N. Kazheva, A. N. Chekhlov, O. A. Dyachenko, M. Kucmin, M. Kajnakova, A. Feher, and V. A. Starodub. J. Phys. Chem. Solids, 2010, 71, 752. https://doi.org/10.1016/j.jpcs.2010.01.012

    Article  CAS  Google Scholar 

  5. A. Narayanan, D. Cao, L. Frazer, A. S. Tayi, A. K. Blackburn, A. C. H. Sue, J. B. Ketterson, J. F. Stoddart, and S. I. Stupp. J. Am. Chem. Soc., 2017, 139, 9186. https://doi.org/10.1021/jacs.7b02279

    Article  CAS  Google Scholar 

  6. W. Yu, X.-Y. Wang, J. Li, Z.-T. Li, Y.-K. Yan, W. Wang, and J. Pei. Chem. Commun., 2013, 49, 54. https://doi.org/10.1039/c2cc37655e

    Article  CAS  Google Scholar 

  7. A. Suzuki, T. Ohtsuki, T. Oku, and T. Akiyama. Mater. Sci. Eng., B, 2012, 177, 877. https://doi.org/10.1016/j.mseb.2012.03.052

    Article  CAS  Google Scholar 

  8. V. A. Starodub and T. N. Starodub. Russ. Chem. Rev., 2014, 83, 391. https://doi.org/10.1070/RC2014v083n05ABEH004299

    Article  Google Scholar 

  9. K. P. Goetz, D. Vermeulen, M. E. Payne, C. Kloc, L. E. McNeil, and O. D. Jurchescu. J. Mater. Chem. C, 2014, 2, 3065. https://doi.org/10.1039/C3TC32062F

    Article  CAS  Google Scholar 

  10. R. S. Mulliken and W. B. Person. Molecular Complexes. New York: Wiley-Interscience, 1969. https://doi.org/10.1016/0022-2860(71)87071-0

    Article  Google Scholar 

  11. P. Hu, K. Du, F. Wei, H. Jiang, and C. Kloc. Cryst. Growth Des., 2016, 16, 3019. https://doi.org/10.1021/acs.cgd.5b01675

    Article  CAS  Google Scholar 

  12. G. Saito and T. Murata. Philos. Trans. R. Soc., A, 2008, 366, 139. https://doi.org/10.1098/rsta.2007.2146

    Article  CAS  Google Scholar 

  13. B. Averkiev, R. Isaac, E. V. Jucov, V. N. Khrustalev, C. Kloc, L. E. McNeil, and T. V. Tim ofeeva. Cryst. Growth Des., 2018, 18, 4095. https://doi.org/10.1021/acs.cgd.8b00501

    Article  CAS  Google Scholar 

  14. M. Singh and D. Chopra. Cryst. Growth Des., 2018, 18, 6670. https://doi.org/10.1021/acs.cgd.8b00918

    Article  CAS  Google Scholar 

  15. A. A. Bakulin, D. Martyanov, D. Yu. Paraschuk, H. M. P. van Loosdrecht, and M. S. Pshenichnikov. Chem. Phys. Lett., 2009, 482, 99. https://doi.org/10.1016/j.cplett.2009.09.052

    Article  CAS  Google Scholar 

  16. O. D. Parashchuk, V. V. Bruevich, and D. Yu. Paraschuk. Phys. Chem. Chem. Phys., 2010, 12, 6021. https://doi.org/10.1039/b927324g

    Article  CAS  Google Scholar 

  17. A. Yu. Sosorev, O. D. Parashchuk, S. A. Zapunidi, G. S. Kashtanov, I. V. Golovnin, S. Kommanaboyina, I. F. Perepichka, and D. Yu. Paraschuk. Phys. Chem. Chem. Phys., 2016, 18, 4684. https://doi.org/10.1039/c5cp05266a

    Article  CAS  Google Scholar 

  18. M. Sevignon, M. Macaud, A. Favre-Reguillon, J. Schulz, M. Rocault, R. Faure, M. Vrinatd, and M. Lemaire. Green Chem., 2005, 7, 413. https://doi.org/10.1039/b502672e

    Article  CAS  Google Scholar 

  19. H. Nasrallah, A. Pagnoux, D. Didier, C. Magnier, L. Toupet, R. Guillot, C. Crévisy, M. Mauduit, and E. Schulz. Eur. J. Org. Chem., 2014, 7781. https://doi.org/10.1002/ejoc.201403194

    Article  CAS  Google Scholar 

  20. R. V. Linko, M. A. Ryabov, P. V. Strashnov, N. A. Polyanskaya, V. V. Davydov, P. V. Dorovatovskii, and V. N. Khrustalev. Russ. J. Gen. Chem., 2020, 90, 1869. https://doi.org/10.1134/S1070363220100096

    Article  CAS  Google Scholar 

  21. R. Linko, M. Ryabov, P. Strashnov, P. Dorovatovskii, V. Khrustalev, and V. Davydov. Molecules, 2021, 26, 6391. https://doi.org/10.3390/molecules26216391

    Article  CAS  Google Scholar 

  22. R. V. Linko, M. A. Ryabov, P. V. Strashnov, V. V. Davydov, P. V. Dorovatovskii, N. Yu. Chernikova, and V. N. Khrustalev. Russ. J. Gen. Chem., 2022, 92, 212. https://doi.org/10.1134/S1070363222020104

    Article  CAS  Google Scholar 

  23. V. G. Pavelyev, O. D. Parashchuk, M. Krompiec, T. V. Orekhova, I. F. Perepichka, P. H. M. van Loosdrecht, D. Yu. Paraschuk, and M. S. Pshenichnikov. J. Phys. Chem. C, 2014, 118, 30291. https://doi.org/10.1021/jp510543c

    Article  CAS  Google Scholar 

  24. Bruker, APEX3. Madison, WI: Bruker AXS, 2018.

  25. Bruker, SADABS. Madison, WI: Bruker AXS, 2016.

  26. G. M. Sheldrick. Acta Crystallogr., Sect. C, 2015, 71, 3. https://doi.org/10.1107/S2053229614024218

    Article  Google Scholar 

  27. S. F. Boys, F.Bernardi. Mol. Phys., 1970, 19, 553. https://doi.org/10.1080/00268977000101561

    Article  CAS  Google Scholar 

  28. E. Caldeweyher, C. Bannwarth, and S. Grimme. J. Chem. Phys., 2017, 147, 034112. https://doi.org/10.1063/1.4993215

    Article  CAS  Google Scholar 

  29. E. D. Glendening, J. K. Badenhoop, A. E. Reed, J. E. Carpenter, J. A. Bohmann, C. M. Morales, and F. Weinhold. NBO 5.G. Madison, WI: Theoretical Chemistry Institute, University of Wisconsin, 2004.

  30. A. A. Granovsky. Firefly, version 8.20, http://classic.chem.msu.su/gran/firefly/index.html

  31. L. Kh. Minacheva, V. S. Sergienko, S. B. Strashnova, O. V. Avramenko, O. V. Kovalchukova, O. A. Egorova, and B. E. Zaitsev. Crystallogr. Rep., 2005, 50, 72. https://doi.org/10.1134/1.1857248

    Article  CAS  Google Scholar 

  32. F. P. A. Fabbiani, D. R. Allan, W. I. F. David, S. A. Moggach, S. Parsons, and C. R. Pulham. CrystEngComm., 2004, 6, 505. https://doi.org/10.1039/b406631f

    Article  CAS  Google Scholar 

  33. P. Hu, Sh. Wang, A. Chaturvedi, F. Wei, X. Zhu, X. Zhang, R. Li, Y. Li, H. Jiang, Y. Long, and Ch. Kloc. Cryst. Growth Des., 2018, 18, 1776. https://doi.org/10.1021/acs.cgd.7b01669

    Article  CAS  Google Scholar 

Download references

Funding

This work was funded by the Ministry of Science and Higher Education of the Russian Federation (project No. 075-03-2020-223 (0770-2020-0017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. V. Linko.

Ethics declarations

The authors declare that they have no conflicts of interests.

Additional information

Russian Text © The Author(s), 2022, published in Zhurnal Strukturnoi Khimii, 2022, Vol. 63, No. 11, 101104.https://doi.org/10.26902/JSC_id101104

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Linko, R.V., Ryabov, M.A., Davydov, V.V. et al. QUANTUM CHEMICAL SIMULATION OF 2,4,7-TRINITRO-9H-FLUORENE-9-ONE CHARGE-TRANSFER COMPLEXES WITH NONLINEAR POLYCYCLIC AROMATIC HYDROCARBONS. CRYSTAL AND MOLECULAR STRUCTURE OF THE (1:1) 2,4,7-TRINITRO-9H- FLUORENE-9-ONE COMPLEX WITH PHENANTHRENE. J Struct Chem 63, 1758–1769 (2022). https://doi.org/10.1134/S0022476622110051

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476622110051

Keywords

Navigation