Skip to main content
Log in

Quantum chemical study of the structures and dynamic behavior of tricarbonyl complexes of Group 6 metals (Cr, Mo, W) with polyaromatic hydrocarbons using the density functional theory

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

The quantum chemical study of the mechanism was performed for tricarbonyl η6-complexes of coronene I-M and kekulene II-M (M = Cr, Mo, W) by the density functional method. The activation barriers of η66-interring haptotropic rearrangements (IHR), being the migration of the metaltricarbonyl group M(CO)3 from one six-membered aromatic ring to another, were determined. The processes of η66-IHR in the metal tricarbonyl complexes with relatively high polycyclic aromatic hydrocarbons (PAH) I and II occur with close energy barriers (ΔG ≈ 20—25 kcal mol–1), which are lower than the barriers (ΔG ~ 30 kcal mol–1) of similar transformations measured or calculated earlier for the chromium tricarbonyl complexes of naphthalene and its derivatives and other PAH. For the molybdenum tricarbonyl complexes the activation barriers of η66-IHR decrease additionally by ~ 5 kcal mol–1 compared to those for the chromium tricarbonyl complexes, whereas for the tungsten tricarbonyl complexes they increase again and become approximately equal to the activation barriers of similar chromium tricarbonyl complexes. All stationary states on the potential energy surface determining the mechanism of η66-IHR are characterized by a decrease in hapticity compared to the initial and final complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Laurencin, E. Garcia Fidalgo, R. Villanneau, F. Villain, P. Herson, J. Pacifico, A. Proust, Chem.—A Eur. J., 2004, 10, 208.

    Article  CAS  Google Scholar 

  2. K. Fagnou, M. Lautens, Chem. Rev., 2003, 103, 169–196.

    Article  CAS  Google Scholar 

  3. G. A. Molander, J. A. C. Romero, Chem. Rev., 2002, 102, 2161–2186.

    Article  CAS  Google Scholar 

  4. Y. F. Oprunenko, N. G. Akhmedov, D. N. Laikov, S. G. Malyugina, V. I. Mstislavsky, V. A. Roznyatovsky, Y. A. Ustynyuk, N. A. Ustynyuk, J. Organomet. Chem., 1999, 583, 136

    Article  CAS  Google Scholar 

  5. K. H. Dötz, H. C. Jahr, Chem. Rec., 2004, 4, 61–71.

    Article  Google Scholar 

  6. S. Maiorana, C. Baldoli, E. Licandro, L. Casiraghi, de E. Magistris, A. Paio, S. Provera, P. Seneci, Tetrahedron Lett., 2000, 41, 7271.

    Article  CAS  Google Scholar 

  7. Yu. F. Oprunenko, Russ. Chem. Rev., 2000, 69, 683.

    Article  CAS  Google Scholar 

  8. Y. F. Oprunenko, I. P. Gloriozov, K. Lyssenko, S. Malyugina, D. Mityuk, V. Mstislavsky, H. Günther, G. von Firks, M. Ebener, J. Organomet. Chem., 2002, 656, 27.

    Article  CAS  Google Scholar 

  9. M. V. Zabalov, I. P. Gloriozov, Y. F. Oprunenko, D. A. Lemenovskii, Russ. Chem. Bull., 2003, 52, 1567.

    Article  CAS  Google Scholar 

  10. I. Gridnev, Coord. Chem. Rev., 2008, 252, 1798.

    Article  CAS  Google Scholar 

  11. Yu. F. Oprunenko, Doct. Sci. (Thesis), Department of Chemistry, M. V. Lomonosov Moscow State University, Moscow, 1999, 350 pp. (in Russian)

    Google Scholar 

  12. R. S. Armstrong, M. J. Aroney, C. M. Barnes, K. W. Nugent, Appl. Organomet. Chem., 1990, 4, 569

    Article  CAS  Google Scholar 

  13. J. T. Price, T. S. Sorens, Canad. J. Chem., 1968, 46, 515.

    Article  CAS  Google Scholar 

  14. I. P. Gloriozov, A. Yu. Vasilґkov, Yu. F. Oprunenko, Yu. A. Ustynyuk, Russ. J. Phys. Chem., 2004, 78, 244.

    Google Scholar 

  15. J. O. C. Jiménez-Halla, J. Robles, M. Solа´, J. Phys. Chem., 2008, 112, 1202

    Article  Google Scholar 

  16. J. O. C. Jiménez-Halla, J. Robles, M. Solá, Organometallics, 2008, 27, 5230.

    Article  Google Scholar 

  17. I. P. Gloriozov, Yu. F. Oprunenko, J.-Y. Saillard, Eur. J. Inorg. Chem., 2015, 2, 250.

    Article  Google Scholar 

  18. F. Nunzi, F. Mercuri, De F. Angelis, A. Sgamellotti, P. Giannozzi, J. Phys. Chem., 2004, 108, 5243.

    Article  CAS  Google Scholar 

  19. Yu. F. Oprunenko, I. P. Gloriozov, J. Organomet. Chem., 2009, 694, 1195.

    Article  CAS  Google Scholar 

  20. Yu. F. Oprunenko, I. P. Gloriozov, Russ. Chem. Bull., 2010, 59, 2061.

    Article  CAS  Google Scholar 

  21. Yu. F. Oprunenko, I. P. Gloriozov, Russ. Chem. Bull., 2011, 60, 213.

    Article  CAS  Google Scholar 

  22. E. O. Fetisov, I. P. Gloriozov, Yu. F. Oprunenko, J.-Y. Saillard, S. Kahlal, Organometallics, 2013, 32, 3512.

    Article  CAS  Google Scholar 

  23. P. Hrobárik, V. Hrobáriková, F. Meier, M. Repisky, S. Komorovsky, M. Kaupp, J. Phys. Chem., 2011, 115, 5654.

    Article  Google Scholar 

  24. D. L. Bryce, R. E. Wasylishen, Phys. Chem. Chem. Phys., 2002, 4, 3591.

    Article  CAS  Google Scholar 

  25. B. V. Lokshin, N. E. Borisova, B. M. Senyavin, M. D. Reshetova, Russ. Chem. Bull., 2002, 51, 1656.

    Article  CAS  Google Scholar 

  26. G. Zhu, K. Pang, G. Parkin, J. Am. Chem. Soc., 2008, 130, 1564.

    Article  CAS  Google Scholar 

  27. E. O. Fetisov, I. P. Gloriozov, M. S. Nechaev, S. Kahlal, J. Y. Saillard, Y. F. Oprunenko, J. Organomet. Chem., 2017, 830, 212.

    Article  CAS  Google Scholar 

  28. A. Pfletschinger, M. Dolg, J. Organomet. Chem., 2009, 694, 3338.

    Article  CAS  Google Scholar 

  29. J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett., 1996, 77, 3865.

    Article  CAS  Google Scholar 

  30. K. G. J. Dyall, Chem. Phys., 1994, 100, 2118.

    CAS  Google Scholar 

  31. D. N. Laikov, Chem. Phys. Lett., 2005, 416, 116.

    Article  CAS  Google Scholar 

  32. H. B. Gonzalez, J. Schlegel, J. Phys. Chem., 1990, 94, 5523.

    Article  CAS  Google Scholar 

  33. G. Schreckenbach, T. Ziegler, Int. J. Quantum Chem., 1997, 61, 899

    Article  CAS  Google Scholar 

  34. G. Schreckenbach, T. Ziegler, J. Phys. Chem., 1995, 99, 606.

    Article  CAS  Google Scholar 

  35. D. N. Laikov, Y. A. Ustynyuk, Russ. Chem. Bull., 2005, 54, 820.

    Article  CAS  Google Scholar 

  36. J. C. Fetzer, J. Phys.: Condens. Matter, 2016, 28, 304001.

    Google Scholar 

  37. F. Diederich, H. A. Staab, Angew. Chem., Int. Ed., 1978, 17, 372

    Article  Google Scholar 

  38. F. Diederich, H. A. Staab, Angew. Chem., Int. Ed., 1979, 91, 733.

    Article  Google Scholar 

  39. H. A. Staab, F. Diederich, C. Krieger, D. Schweitzer, Chem. Ber., 1983, 116, 3504.

    Article  CAS  Google Scholar 

  40. A. Almenningen, O. Bastiansen, F. Dyvik, Acta Crystallogr., 1961, 14, 1056.

    Article  CAS  Google Scholar 

  41. J. M. L. Martin, Chem. Phys. Lett., 1996, 262, 97.

    Article  CAS  Google Scholar 

  42. Haiujn Jiao, Angew. Chem., Int. Ed., 1996, 35, 2383.

    Article  Google Scholar 

  43. T. Thonhauser, D. Ceresoli, N. Marzari, Int. J. Quantum Chem., 2009, 109, 3336.

    Article  CAS  Google Scholar 

  44. B. Hajgato, M. S. Deleuze, K. Ohno, Chem.—A Eur. J., 2006, 12, 5757.

    Article  CAS  Google Scholar 

  45. M. J. Allen, V. C. Tung, R. B. Kaner, Chem. Rev., 2009, 110, 132.

    Article  Google Scholar 

  46. Y. Zhang, L. Zhang, C. Zhou, Acc. Chem. Res., 2013, 46, 2329.

    Article  CAS  Google Scholar 

  47. N. A. Ustynyuk, L. N. Novikova, V. K. Belґskii, Yu. F. Oprunenko, S. G. Malyugina, O. I. Trifonova, Yu. A. Ustynyuk, J. Organomet. Chem., 1985, 294, 31.

    Article  CAS  Google Scholar 

  48. E. O. Pentsak, A. S. Kashin, M. V. Polynski, K. O. Kvashnina, P. Glatzel, V. P. Ananikov, Chem. Sci., 2015, 6, 3302.

    Article  CAS  Google Scholar 

  49. T. J. Seiders, K. K. Baldridge, J. M. O´Conor, J. S. Siegel, J. Am. Chem. Soc., 1997, 119, 4781.

    Article  CAS  Google Scholar 

  50. H. Rabaa, M. Lacoste, M.-H. Delville-Desboise, J. R. B. Gloaguen, N. Ardoin, D. Astruc, A. Le Beuze, J.-Y. Saillard, Organometallics, 1995, 14, 5078.

    Article  CAS  Google Scholar 

  51. X. Tian, S. Sarkar, M. L. Moser, F. Wang, A. Pekker, E. Bekyarova, R. C. Haddon, Mater. Lett., 2012, 80, 171.

    Article  CAS  Google Scholar 

  52. E. Bekyarova, S. Sarkar, F. Wang, M. E. Itkis, I. Kalinina, X. Tian, R. C. Haddon, Acc. Chem. Res., 2012, 46, 65.

    Article  Google Scholar 

  53. S. Sarkar, H. Zhang, J. W. Huang, F. Wang, E. Bekyarova, C. N. Lau, R. C. Haddon, Adv. Mater., 2013, 25, 1131.

    Article  CAS  Google Scholar 

  54. J. C. Fetzer, W. R. Biggs, Polycyclic Arom. Comp., 1994, 4, 3.

    Article  CAS  Google Scholar 

  55. US Patent 4526724, 1985, US Patent and Trademark Office; https://www.google.com/patents/US3225071

  56. F. G. N. Cloke, A. R. Dias, A. M. Galãvo, J. L. F. da Silva, J. Organomet. Chem., 1997, 548, 177

    Article  CAS  Google Scholar 

  57. A. M. Galvão, J. L. F. da Silva, Coll. Czechoslovak Chem. Commun., 1998, 63, 299.

    Article  Google Scholar 

  58. K. Nakada, A. Ishii, Solid State Commun., 2011, 151, 13

    Article  CAS  Google Scholar 

  59. R. Zan, U. Bangert, Q. Ramasse, K. S. Novoselov, Nano Lett., 2011, 11, 1087

    Article  CAS  Google Scholar 

  60. F. Banhart, J. Kotakoski, A. V. Krasheninnikov, ACS Nano, 2010, 5, 26.

    Article  Google Scholar 

  61. I. P. Gloriozov, R. Marchal, J. Y. Saillard, Yu. F. Oprunenko, Eur. J. Inorg. Chem., 2015, 2, 250.

    Article  Google Scholar 

  62. I. Kalinina, Y. F. Al-Hadeethi, E. Bekyarova, C. Zhao, Q. Wang, X. Zhang, R. C. Haddon, Mater. Lett., 2015, 142, 312.

    Article  CAS  Google Scholar 

  63. L. Türker, S. Gümüs, Acta Chim. Slovenica, 2009, 56, 246.

    Google Scholar 

  64. R. F. Bader, Atom in Molecules: A Quantum Theory, Oxford University Press, Oxford, 1990, 438 pp.

    Google Scholar 

  65. B. Rees, P. Coppens, Acta Crystallogr., 1973, 29, 2515.

    Article  Google Scholar 

  66. A. Almenningen, O. Bastiansen, F. Dyvik, Acta Crystallogr., 1961, 14, 1056.

    Article  CAS  Google Scholar 

  67. H. Sato, C. Kikumori, S. Sakaki, Phys. Chem. Chem. Phys., 2011, 13, 309.

    Article  CAS  Google Scholar 

  68. T. A. Albright, P. Hofmann, R. Hoffmann, C. P. Lillya, P. A. Dobosh, J. Am. Chem. Soc., 1983, 105, 3396.

    Article  CAS  Google Scholar 

  69. K. Chhor, G. Lucazeau, Int. J. Quantum Chem., 1982, 77, 152.

    Google Scholar 

  70. A. A. Low, M. B. Hall, Int. J. Quantum Chem., 2000, 77, 152.

    Article  CAS  Google Scholar 

  71. C. J. Czerwinski, E. O. Fetisov, I. P. Gloriozov, Yu. F. Oprunenko, Dalton Trans., 2013, 42, 10487.

    Article  CAS  Google Scholar 

  72. E. O. Fetisov, Diploma Work, Department of Chemistry, M. V. Lomonosov Moscow State University, Moscow, 2012, 78 pp. (in Russian).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. F. Oprunenko.

Additional information

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 7, pp. 1163—1176, July, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhulyaev, N.S., Gloriozov, I.P., Oprunenko, Y.F. et al. Quantum chemical study of the structures and dynamic behavior of tricarbonyl complexes of Group 6 metals (Cr, Mo, W) with polyaromatic hydrocarbons using the density functional theory. Russ Chem Bull 66, 1163–1176 (2017). https://doi.org/10.1007/s11172-017-1868-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-017-1868-7

Key words

Navigation