Skip to main content
Log in

CESIUM SALTS WITH THE DIFURAZANOPYRAZINE RADICAL ANION

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Crystalline Cs salts with the difurazanopyrazine radical anion are synthesized: Cs(L)(H2O)2-I, Cs(L)(H2O)2-II, Cs2(L)2(HL)(H2O), Cs3(L)3(L••)2(H2O)3. In the solid phase, Cs ions are surrounded by water molecules and are located between the stacks of difurazanopyrazines, forming a framework. The study of the structure and magnetic properties of the compounds shows that Cs(L)(H2O)2-I represents a metastable phase that transforms into Cs(L)(H2O)2-II on cooling and differs from the initial compound by a shift of radical anions relative to each other in the stacks. It is found that in Cs(L)(H2O)2-II there is strong antiferromagnetic exchange between paramagnetic centers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

REFERENCES

  1. L. B. Volodarsky, V. A. Reznikov, and V. I. Ovcharenko. Synthetic Chemistry of Stable Nitroxides. CRC Press, 2017. https://doi.org/10.1201/9780203710159

    Book  Google Scholar 

  2. Stable Radicals / Eds. R. G. Hicks. Chichester, UK: John Wiley & Sons, Ltd, 2010. https://doi.org/10.1002/9780470666975

    Book  Google Scholar 

  3. G. I. Likhtenshtein. Nitroxides. Cham: Springer International Publishing, 2020, Vol. 292. https://doi.org/10.1007/978-3-030-34822-9

    Article  Google Scholar 

  4. E. V. Tretyakov, V. I. Ovcharenko, A. O. Terentev, I. B. Krylov, T. V. Magdesieva, D. G. Mazhukin, and N. P. Gritsan. Russ. Chem. Rev., 2022, 91(2), RCR5025. https://doi.org/10.1070/rcr5025

    Article  Google Scholar 

  5. S. Sanvito. Chem. Soc. Rev., 2011, 40(6), 3336. https://doi.org/10.1039/c1cs15047b

    Article  CAS  PubMed  Google Scholar 

  6. E. Coronado. Nat. Rev. Mater., 2020, 5(2), 87-104. https://doi.org/10.1038/s41578-019-0146-8

    Article  Google Scholar 

  7. W. Han, K. Pi, K. M. McCreary, Y. Li, J. J. I. Wong, A. G. Swartz, and R. K. Kawakami. Phys. Rev. Lett., 2010, 105(16), 167202. https://doi.org/10.1103/physrevlett.105.167202

    Article  PubMed  Google Scholar 

  8. Y. Yonekuta, K. Susuki, K. Oyaizu, K. Honda, and H. Nishide. J. Am. Chem. Soc., 2007, 129(46), 14128/14129. https://doi.org/10.1021/ja075553p

    Article  CAS  PubMed  Google Scholar 

  9. K. Oyaizu and H. Nishide. Adv. Mater., 2009, 21(22), 2339–2344. https://doi.org/10.1002/adma.200803554

    Article  CAS  Google Scholar 

  10. J. Lee, E. Lee, S. Kim, G. S. Bang, D. A. Shultz, R. D. Schmidt, M. D. E. Forbes, and H. Lee. Angew. Chem., Int. Ed., 2011, 50(19), 4414-4418. https://doi.org/10.1002/anie.201004899

    Article  CAS  Google Scholar 

  11. R. Gaudenzi, J. de Bruijckere, D. Reta, I. de P. R. Moreira, C. Rovira, J. Veciana, H. S. J. van der Zant, and E. Burzurí. ACS Nano, 2017, 11(6), 5879-5883. https://doi.org/10.1021/acsnano.7b01578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. R. Gaudenzi, E. Burzurí, D. Reta, I. de P. R. Moreira, S. T. Bromley, C. Rovira, J. Veciana, and H. S. J. van der Zant. Nano Lett., 2016, 16(3), 2066-2071. https://doi.org/10.1021/acs.nanolett.6b00102

    Article  CAS  PubMed  Google Scholar 

  13. P. Turek, K. Nozawa, D. Shiomi, K. Awaga, T. Inabe, Y. Maruyama, and M. Kinoshita. Chem. Phys. Lett., 1991, 180(4), 327-331. https://doi.org/10.1016/0009-2614(91)90328-7

    Article  CAS  Google Scholar 

  14. R. Chiarelli, M. A. Novak, A. Rassat, and J. L. Tholence. Nature, 1993, 363(6425), 147-149. https://doi.org/10.1038/363147a0

    Article  CAS  Google Scholar 

  15. P.-M. Allemand, K. C. Khemani, A. Koch, F. Wudl, K. Holczer, S. Donovan, G. Grüner, and J. D. Thompson. Science, 1991, 253(5017), 301/302. https://doi.org/10.1126/science.253.5017.301

    Article  CAS  PubMed  Google Scholar 

  16. C. M. Robertson, D. J. T. Myles, A. A. Leitch, R. W. Reed, B. M. Dooley, N. L. Frank, P. A. Dube, L. K. Thompson, and R. T. Oakley. J. Am. Chem. Soc., 2007, 129(42), 12688/12689. https://doi.org/10.1021/ja076841o

    Article  CAS  PubMed  Google Scholar 

  17. J. S. Miller, A. J. Epstein, and W. M. Reiff. Science, 1988, 240(4848), 40-47. https://doi.org/10.1126/science.240.4848.40

    Article  CAS  PubMed  Google Scholar 

  18. J. S. Miller. J. Mater. Chem., 2010, 20(10), 1846-1857. https://doi.org/10.1039/b918080j

    Article  CAS  Google Scholar 

  19. A. J. Banister, N. Bricklebank, I. Lavender, J. M. Rawson, C. I. Gregory, B. K. Tanner, W. Clegg, M. R. J. Elsegood, and F. Palacio. Angew. Chem., Int. Ed. Engl., 1996, 35(21), 2533-2535. https://doi.org/10.1002/anie.199625331

    Article  CAS  Google Scholar 

  20. A. J. Banister, N. Bricklebank, W. Clegg, M. R. J. Elsegood, C. I. Gregory, I. Lavender, J. M. Rawson, and B. K. Tanner. J. Chem. Soc. Chem. Commun., 1995, (6), 679. https://doi.org/10.1039/c39950000679

    Article  Google Scholar 

  21. J.-H. Her, P. W. Stephens, R. A. Davidson, K. S. Min, J. D. Bagnato, K. van Schooten, C. Boehme, and J. S. Miller. J. Am. Chem. Soc., 2013, 135(48), 18060-18063. https://doi.org/10.1021/ja410818e

    Article  CAS  PubMed  Google Scholar 

  22. V. I. Ovcharenko, A. B. Sheremetev, K. V. Strizhenko, S. V. Fokin, G. V. Romanenko, A. S. Bogomyakov, V. A. Morozov, M. A. Syroeshkin, A. Y. Kozmenkova, A. V. Lalov, and M. P. Egorov. Mendeleev Commun., 2021, 31(6), 784-788. https://doi.org/10.1016/j.mencom.2021.11.005

    Article  CAS  Google Scholar 

  23. I. B. Starchenkov, V. G. Andrianov, and A. F. Mishnev. Chem. Heterocycl. Compd., 1997, 33(2), 216-228. https://doi.org/10.1007/bf02256764

    Article  CAS  Google Scholar 

  24. G. M. Sheldrick. Acta Crystallogr., Sect. C: Struct. Chem., 2015, 71(1), 3-8. https://doi.org/10.1107/s2053229614024218

    Article  Google Scholar 

  25. F. H. Allen, O. Kennard, D. G. Watson, L. Brammer, A. G. Orpen, and R. Taylor. J. Chem. Soc., Perkin Trans. 2, 1987, (12), S1. https://doi.org/10.1039/p298700000s1

    Article  Google Scholar 

Download references

Funding

The work was supported by the grant of the Ministry of Science and Higher Education of the Russian Federation (Agreement with the Institute of Organic Chemistry, Russian Academy of Sciences 075-15-2020-803).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. I. Ovcharenko or G. V. Romanenko.

Ethics declarations

The authors declare that they have no conflicts of interests.

Additional information

Russian Text © The Author(s), 2022, published in Zhurnal Strukturnoi Khimii, 2022, Vol. 63, No. 10, 100166.https://doi.org/10.26902/JSC_id100166

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ovcharenko, V.I., Fokin, S.V., Sheremetev, A.B. et al. CESIUM SALTS WITH THE DIFURAZANOPYRAZINE RADICAL ANION. J Struct Chem 63, 1697–1707 (2022). https://doi.org/10.1134/S0022476622100158

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476622100158

Keywords

Navigation