Skip to main content
Log in

Supramolecular complexes [M{NH(CH2)4O}{S2CN(C2H5)2 2] ∙ CCl4 (M = Zn or 63Cu(II)): Synthesis, structures, spectral and thermal properties

  • Published:
Russian Journal of Coordination Chemistry Aims and scope Submit manuscript

Abstract

Solvated adducts of diethyldithiocarbamate complexes of zinc and copper(II) of the formula [M{NH(CH2)4O}{S2CN(C2H5)2 2] ∙ CCl4 (M = Zn (I) and 63Cu (II)) were obtained. 13C MAS NMR experiments revealed magnetic nonequivalence in the dithiocarbamate moieties of the adduct isomers, the morpholine heterocycles, and the outer-sphere solvate molecules. The rhombic anisotropy of the EPR parameters of magnetically diluted isotope-substituted complex II is due to the copper polyhedron geometry, which is intermediate between a tetragonal pyramid and a trigonal bipyramid, with the ground state of the unpaired electron resulting from the mixing \(3{d_{{x^2} - {y^{2 - }}}}\) of and \(3{d_{{z^{2 - }}}}\) of copper(II). According to X-ray diffraction data, complex I is a supramolecular complex combining structurally nonequivalent adduct molecules (A and B) and “guest” molecules (CCl4). In addition, the crystal lattice has an array of channels occupied by outersphere solvate CCl4 molecules (a structural type of lattice clathrates). An STA study of the thermal properties revealed three main thermolysis steps: desorption of the solvate CCl4 molecules, elimination of coordinated morpholine molecules, and thermolysis of the dithiocarbamate moiety of the adduct.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Decken, A., Gossage, R.A., Chan, M.Y., et al., Appl. Organomet. Chem., 2004, vol. 18, no. 2, p. 101.

    Article  CAS  Google Scholar 

  2. Siddiqi, K.S., Nami, S.A.A., and Chebude Lutfullah, Y., J. Braz. Chem. Soc., 2006, vol. 17, no. 1, p. 107.

    Article  CAS  Google Scholar 

  3. Khan, S., Nami, S.A.A., and Siddiqi, K.S., J. Mol. Struct., 2008, vol. 875, nos. 1–3, p. 478.

    Article  CAS  Google Scholar 

  4. Prakasam, B.A., Ramalingam, K., Bocelli, G., and Cantoni, A., Polyhedron, 2007, vol. 26, no. 15, p. 4489.

    Article  CAS  Google Scholar 

  5. Srinivasan, N., Thirumaran, S., and Ciattini, S., J. Mol. Struct., 2009, vol. 936, nos. 1–3, p. 234.

    Article  CAS  Google Scholar 

  6. Thirumaran, S., Ramalingam, K., Bocelli, G., and Righi, L., Polyhedron, 2009, vol. 28, no. 2, p. 263.

    Article  CAS  Google Scholar 

  7. Srinivasan, N., Sathyaselvabala, V., Kuppulekshmy, K., et al., Monatsh. Chem., 2009, vol. 140, no. 12, p. 1431.

    Article  CAS  Google Scholar 

  8. Subha, P.V., Valarmathi, P., Srinivasan, N., et al., Polyhedron, 2010, vol. 29, no. 3, p. 1078.

    Article  CAS  Google Scholar 

  9. Onwudiwe, D.C. and Ajibade, P.A., Polyhedron, 2010, vol. 29, no. 5, p. 1431.

    Article  CAS  Google Scholar 

  10. Mamba, S.M., Mishra, A.K., Mamba, B.B., et al., Spectrochim. Acta, Part A, 2010, vol. 77, no. 3, p. 579.

    Article  Google Scholar 

  11. Mishra, A.K. and Kaushik, N.K., Spectrochim. Acta., Part. A, 2008, vol. 69, no. 3, p. 842.

    Article  CAS  Google Scholar 

  12. Ajibade, P.A., Onwudiwe, D.C., and Moloto, M.J., Polyhedron, 2011, vol. 30, no. 2, p. 246.

    Article  CAS  Google Scholar 

  13. Marx, N.R., Pandian, K., and Sivakumar, K., Appl. Surf. Sci., 2011, vol. 257, no. 7, p. 2745.

    Article  Google Scholar 

  14. Dulare, R., Bharty, M.K., Singh, A., and Singh, N.K., Polyhedron, 2012, vol. 31, no. 1, p. 373.

    Article  CAS  Google Scholar 

  15. Ivanov, A.V., Leskova, S.A., Mel’nikova, M.A., et al., Russ. J. Inorg. Chem., 2003, vol. 48, no. 3, p. 415.

    Google Scholar 

  16. O’Brien, P., in Inorganic Materials, Bruce, D.W. and Hare, D., Eds., New York: Wiley, 1992, p. 500

    Google Scholar 

  17. Ivanov, A.V., Forshling, V., Kritikos, M., et al., Dokl. Ross. Akad. Nauk, 1999, vol. 369, no. 1, p. 64.

    CAS  Google Scholar 

  18. Ivanov, A.V., Kritikos, M., Antzutkin, O.N., and Forsling, W., Inorg. Chim. Acta, 2001, vol. 321, nos. 1–2, p. 63.

    Article  CAS  Google Scholar 

  19. Ivanov, A.V. and Antzutkin, O.N., Top. Curr. Chem., 2005, vol. 246, p. 271.

    Article  CAS  Google Scholar 

  20. Ivanov, A.V., Lutsenko, I.A., Gerasimenko, A.V., and Merkulov, E.B., Russ. J. Inorg. Chem., 2008, vol. 53, no. 2, p. 293.

    Article  Google Scholar 

  21. Ivanov, A.V., Lutsenko, I.A., Zaeva, A.S., et al., Russ. J. Coord. Chem., 2007, vol. 33, no. 11, p. 815.

    Article  CAS  Google Scholar 

  22. Lutsenko, I.A., Ivanov, A.V., Korneeva, E.V., and Tursina, A.I., Russ. J. Coord. Chem., 2012, vol. 38, no. 11, p. 709.

    Article  CAS  Google Scholar 

  23. Bonamico, M., Mazzone, G., Vaciago, A., and Zambonelli, L., Acta Crystallogr., 1965, vol. 19, no. 6, p. 898.

    Article  CAS  Google Scholar 

  24. Bennett, A.E., Rienstra, C.M., Auger, M., et al., J. Chem. Phys., 1995, vol. 103, no. 13, p. 6951.

    Article  CAS  Google Scholar 

  25. Earl, W.L. and Vanderhart, D.L., J. Magn. Reson., 1982, vol. 48, no. 1, p. 35.

    CAS  Google Scholar 

  26. Morcombe, C.R. and Zilm, K.W., J. Magn. Reson., 2003, vol. 162, no. 2, p. 479.

    Article  CAS  Google Scholar 

  27. Farrugia, L.J., J. Appl. Crystallogr., 1999, vol. 32, no. 4, p. 837.

    Article  CAS  Google Scholar 

  28. North, A.C.T., Phillips, D.C., and Mathews, F.S., Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr., 1968, vol. 64, no. 3, p 351.

    Google Scholar 

  29. Sheldrick, G.M., Acta Crystallogr., Sect. A: Found. Crystallogr., 2008, vol. 64, no. 1, p. 112.

    Article  CAS  Google Scholar 

  30. Flack, H.D., Acta Crystallogr., Sect. A: Found. Crystallogr., 1983, vol. 39, no. 6, p. 876.

    Article  Google Scholar 

  31. Rieger, Ph.H., Electron Spin Resonance, Athenaeum, 1993, vol. 13B, p. 178.

    Google Scholar 

  32. Ovchinnikov, I.V. and Konstantinov, V.N., J. Magn. Reson., 1978, vol. 32, no. 2, p. 179.

    CAS  Google Scholar 

  33. Arriortua, M.A., Mesa, J.L., Rojo, T., et al., Inorg. Chem., 1988, vol. 27, no. 17, p. 2976.

    Article  CAS  Google Scholar 

  34. Murakami, T., Takei, T., and Ishikawa, Y., Polyhedron, 1997, vol. 16, no. 1, p. 89.

    Article  CAS  Google Scholar 

  35. Ivanov, A.V., Forshling, V., Antsutkin, O.N., and Novikova, E.V., Russ. J. Coord. Chem., 2001, vol. 27, no. 3, p. 158.

    Article  CAS  Google Scholar 

  36. Levy, G.C., Lichter, R.L., and Nelson, G.L., Carbon- 13 Nuclear Magnetic Resonance Spectroscopy, New York Wiley, 1980.

    Google Scholar 

  37. Ivanov, A.V., Forshling, V., Antsutkin, O.N., et al., Dokl. Ross. Akad. Nauk, 1999, vol. 366, no. 5, p. 643.

    CAS  Google Scholar 

  38. Ivanov, A.V., Lutsenko, I.A., and Forshling, V., Russ. J. Coord. Chem., 2002, vol. 28, no. 1, p. 57.

    Article  CAS  Google Scholar 

  39. Addison, A.W., Rao, T.N., Reedijk, J., et al., J. Chem. Soc., Dalton Trans., 1984, no. 7, p. 1349.

    Article  Google Scholar 

  40. Pauling, L., The Nature of the Chemical Bond and the Structure of Molecules and Crystals, London Cornell Univ., 1960.

    Google Scholar 

  41. Bondi, A., J. Phys. Chem., 1964, vol. 68, no. 3, p. 441.

    Article  CAS  Google Scholar 

  42. Bondi, A., J. Phys. Chem., 1966, vol. 70, no. 9, p. 3006.

    Article  CAS  Google Scholar 

  43. Tavlaridis, A. and Neeb, R., Fresenius’ Z. Anal. Chem., 1978, vol. 293, p. 211.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Lutsenko.

Additional information

Original Russian Text © I.A. Lutsenko, E.V. Korneeva, A.V. Ivanov, 2016, published in Koordinatsionnaya Khimiya, 2016, Vol. 42, No. 8, pp. 459–466.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lutsenko, I.A., Korneeva, E.V. & Ivanov, A.V. Supramolecular complexes [M{NH(CH2)4O}{S2CN(C2H5)2 2] ∙ CCl4 (M = Zn or 63Cu(II)): Synthesis, structures, spectral and thermal properties. Russ J Coord Chem 42, 494–501 (2016). https://doi.org/10.1134/S1070328416080042

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070328416080042

Navigation