Skip to main content
Log in

SYNTHESES, CRYSTAL STRUCTURES AND UREASE INHIBITORY ACTIVITIES OF ZnII AND NiII COMPLEXES DERIVED FROM 4,4′-DIMETHOXY-2,2′-(PROPANE-1,3- DIYLDIIMINODIMETHYLENE)DIPHENOL

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Two new zinc(II) and nickel(II) complexes, [Zn2L(μ211-CH3COO)(μ212-CH3COO)]n (1) and [Ni2(HL)2(H2O)21,3-N3)]Cl·2H2O (2·2H2O), where L is the doubly deprotonated form of 4,4′-dimethoxy-2,2′-(propane-1,3-diyldiiminodimethylene)diphenol (H2L), were synthesized and characterized by elemental analyses, infrared and electronic spectroscopy, as well as single crystal X-ray diffraction. Complex 1 is a bidentate bridging and chelating bridging acetate bridged polymeric zinc complex. In the asymmetric unit of the complex, one Zn atom is in distorted trigonal bipyramidal coordination, and the other one is in octahedral coordination. Complex 2·2H2O is an end-to-end azide bridged dinuclear nickel complex. The Ni atoms are in octahedral coordination. The inhibitory property on Jack bean urease of the complexes was studied, and the nickel complex has effective activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

REFERENCES

  1. G. Mohiuddin, K. M. Khan, U. Salar, Kanwal, M. A. Lodhi, A. Wadood, M. Riaz, and S. Perveen. Bioorg. Chem., 2019, 83, 29-46. https://doi.org/10.1016/j.bioorg.2018.10.021

    Article  CAS  PubMed  Google Scholar 

  2. W.-Q. Song, M.-L. Liu, S.-Y. Li, and Z.-P. Xiao. Curr. Top. Med. Chem., 2022, 22, 95-107. https://doi.org/10.2174/1568026621666211129095441

    Article  Google Scholar 

  3. Q. Liu, W.-W. Ni, Z. Li, C.-F. Bai, D.-D. Tan, C.-J. Pu, D. Zhou, Q.-P. Tian, N. Luo, K.-L. Tan, L. Dai, Y. Yan, Y. Pei, X.-H. Li, Z.-P. Xiao, and H.-L. Zhu. Eur. J. Pharm. Sci., 2018, 121, 293-300. https://doi.org/10.1016/j.ejps.2018.05.029

    Article  CAS  PubMed  Google Scholar 

  4. F. S. Carlos, R. J. Kunde, R. O. de Sousa, C. Weinert, A. D. Ulguim, F. Viero, I. Rossi, M. P. Buchain, C. L. Boechat, and F. A. D. Camargo. Nutr. Cycling Agroecosyst., 2022, 122, 313-324. https://doi.org/10.1007/s10705-022-10203-7

    Article  CAS  Google Scholar 

  5. T. Lan, X. Q. He, Q. Wang, O. P. Deng, W. Zhou, L. Luo, G. D. Chen, J. Zeng, S. Yuan, M. Zeng, H. H. Xiao, and X. S. Gao. Appl. Soil Ecol., 2022, 174, 104412. https://doi.org/10.1016/j.apsoil.2022.104412

    Article  Google Scholar 

  6. L. A. R. Ferreira, S. R. Silva, and O. T. Kolln. Inter. J. Plant Prod., 2022, 16, 313-328. https://doi.org/10.1007/s42106-022-00191-7

    Article  Google Scholar 

  7. Q. Liu, W.-K. Shi, S.-Z. Ren, W.-W. Ni, W.-Y. Li, H.-M. Chen, P. Liu, J. Yuan, X.-S. He, J.-J. Liu, P. Cao, P.-Z. Yang, Z.-P. Xiao, and H.-L. Zhu. Eur. J. Med. Chem., 2018, 156, 126-136. https://doi.org/10.1016/j.ejmech.2018.06.065

    Article  CAS  PubMed  Google Scholar 

  8. W.-W. Ni, Q. Liu, S.-Z. Ren, W.-Y. Li, L.-L. Yi, H. Jing, L.-X. Sheng, Q. Wan, P.-F. Zhong, H.-L. Fang, H. Ouyang, Z.-P. Xiao, and H.-L. Zhu. Bioorg. Med. Chem., 2018, 26, 4145-4152. https://doi.org/10.1016/j.bmc.2018.07.003

    Article  CAS  Google Scholar 

  9. W.-K. Shi, R.-C. Deng, P.-F. Wang, Q.-Q. Yue, Q. Liu, K.-L. Ding, M.-H. Yang, H.-Y. Zhang, S.-H. Gong, M. Deng, W.-R. Liu, Q.-J. Feng, Z.-P. Xiao, and H.-L. Zhu. Bioorg. Med. Chem., 2016, 24, 4519-4527. https://doi.org/10.1016/j.bmc.2016.07.052

    Article  CAS  Google Scholar 

  10. A. F. Uberti, N. Callai-Silva, M. V. C. Grahl, A. R. Piovesan, E. G. Nachtigall, C. R. G. Furini, and C. R. Carlini. Inter. J. Mol. Sci., 2022, 23, 3091. https://doi.org/10.3390/ijms23063091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. M.-L. Liu, W.-Y. Li, H.-L. Fang, Y.-X. Ye, S.-Y. Li, W.-Q. Song, Z.-P. Xiao, H. Ouyang, and H.-L. Zhu. ChemMedChem, 2022, 17, e202100618. https://doi.org/10.1002/cmdc.202100618

    Article  PubMed  PubMed Central  Google Scholar 

  12. W.-W. Ni, H.-L. Fang, Y.-X. Ye, W.-Y. Li, L. Liu, Z.-J. Fu, Dawalamu, W.-Y. Zhu, K. Li, F. Li, X. Zou, H. Ouyang, Z.-P. Xiao, and H.-L. Zhu. Med. Chem., 2021, 17, 1046-1059. https://doi.org/10.2174/1573406416999200818152440

    Article  CAS  Google Scholar 

  13. W.-Y. Li, W.-W. Ni, Y.-X. Ye, H.-L. Fang, X.-M. Pan, J.-L. He, T.-L. Zhou, J. Yi, S.-S. Liu, M. Zhou, Z.-P. Xiao, and H.-L. Zhu. J. Enzyme Inhib. Med. Chem., 2020, 35, 404-413. https://doi.org/10.1080/14756366.2019.1706503

    Article  CAS  PubMed Central  Google Scholar 

  14. W.-W. Ni, H.-L. Fang, Y.-X. Ye, W.-Y. Li, C.-P. Yuan, D.-D. Li, S.-J. Mao, S.-E. Li, Q.-H. Zhu, H. Ouyang, Z.-P. Xiao, and H.-L. Zhu. Future Med. Chem., 2020, 12, 1633-1645. https://doi.org/10.4155/fmc-2020-0048

    Article  CAS  PubMed  Google Scholar 

  15. Z.-P. Xiao, W.-K. Shi, P.-F. Wang, W. Wei, X.-T. Zeng, J.-R. Zhang, N. Zhu, M. Peng, B. Peng, X.-Y. Lin, H. Ouyang, X.-C. Peng, G.-C. Wang, and H.-L. Zhu. Bioorg. Med. Chem., 2015, 23, 4508-4513. https://doi.org/10.1016/j.bmc.2015.06.014

    Article  CAS  Google Scholar 

  16. J. Ceramella, D. Iacopetta, A. Catalano, F. Cirillo, R. Lappano, and M. S. Sinicropi. Antibiotics (Basel, Switz.), 2022, 11, 191. https://doi.org/10.3390/antibiotics11020191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. N. Lolak, M. Boga, G. D. Sonmez, M. Tuneg, A. Dogan, and S. Akocak. Pharm. Chem. J., 2022, 55, 1338-1344. https://doi.org/10.1007/s11094-022-02581-7

    Article  CAS  Google Scholar 

  18. K. Rafiq, M. Khan, N. Muhammed, A. Khan, N. U. Rehman, B. E. M. Al-Yahyaei, M. Khiat, S. A. Halim, Z. R. Shah, and R. Csuk. Med. Chem. Res., 2021, 30, 712-728. https://doi.org/10.1007/s00044-020-02696-0

    Article  CAS  Google Scholar 

  19. C.-H. Dai and F.-L. Mao. J. Struct. Chem., 2013, 54, 624-629. https://doi.org/10.1134/S0022476613030244

    Article  CAS  Google Scholar 

  20. S. Thalamuthu and M. A. Neelakantan. Inorg. Chim. Acta, 2021, 516, 120109. https://doi.org/10.1016/j.ica.2020.120109

    Article  CAS  Google Scholar 

  21. A. Sudha and S. J. A. Ali. Inorg. Chim. Acta, 2022, 534, 120817. https://doi.org/10.1016/j.ica.2022.120817

    Article  CAS  Google Scholar 

  22. H. Wang, T. X. Lan, X. Zhang, D. M. Zhang, C. F. Bi, and Y. H. Fan. J. Inorg. Biochem., 2016, 165, 18-24. https://doi.org/10.1016/j.jinorgbio.2016.10.006

    Article  CAS  PubMed  Google Scholar 

  23. A. de Fatima, C. D. Pereira, C. R. S. D. G. Olimpio, B. G. D. Oliveira, L. L. Franco, and P. H. C. da Silva. J. Adv. Res., 2018, 13, 113-126. https://doi.org/10.1016/j.jare.2018.03.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Y. M. Li, L. Y. Xu, M. M. Duan, B. T. Zhang, Y. H. Wang, Y. X. Guan, J. H. Wu, C. L. Jing, and Y. L. You. Polyhedron, 2019, 166, 146-152. https://doi.org/10.1016/j.poly.2019.03.051

    Article  CAS  Google Scholar 

  25. H. Wang, C. G. Xu, X. Zhang, D. M. Zhang, F. Jin, and Y. H. Fan. J. Inorg. Biochem., 2020, 204, 110959. https://doi.org/10.1016/j.jinorgbio.2019.110959

    Article  CAS  PubMed  Google Scholar 

  26. M. Wozniczka, M. Lichawska, M. Sutradhar, M. Chmiela, W. Gonciarz, and M. Pajak. Pharmaceuticals, 2021, 14, 1254. https://doi.org/10.3390/ph14121254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. S. Belaid, O. Benali-Baitich, G. Bouet, and A. Landreau. Chem. Pap., 2015, 69, 1350-1360. https://doi.org/10.1515/chempap-2015-0132

    Article  Google Scholar 

  28. M. M. Duan, Y. M. Li, L. Y. Xu, H. L. Yang, F. W. Luo, Y. X. Guan, B. T. Zhang, C. L. Jing, and Z. L. You. Inorg. Chem. Commun., 2019, 100, 27-31. https://doi.org/10.1016/j.inoche.2018.12.009

    Article  CAS  Google Scholar 

  29. D. S. Nesterov and O. V. Nesterova. Catalysts, 2021, 11, 1148. https://doi.org/10.3390/catal11101148

    Article  CAS  Google Scholar 

  30. Y. Isaka, K. Oyama, Y. Yamada, T. Suenobu, and S. Fukuzumi. Catal. Sci. Technol., 2016, 6, 681-684. https://doi.org/10.1039/C5CY01845E

    Article  CAS  Google Scholar 

  31. A. Paul, A. Figuerola, H. Puschmann, and S. C. Manna. Polyhedron, 2019, 157, 39-48. https://doi.org/10.1016/j.poly.2018.09.023

    Article  CAS  Google Scholar 

  32. Saswati, M. Mohanty, A. Banerjee, S. Biswal, A. Horn, G. Schenk, K. Brzezinski, E. Sinn, H. Reuter, and R. Dinda. J. Inorg. Biochem., 2020, 203, 110908. https://doi.org/10.1016/j.jinorgbio.2019.110908

    Article  CAS  PubMed  Google Scholar 

  33. V. G. Vlasenko, A. S. Burlov, Y. V. Koshchienko, A. A. Kolodina, B. V. Chaltsev, Y. V. Zubavichus, V. N. Khrustalev, T. N. Danilenko, A. A. Zubenko, L. N. Fetisov, and A. I. Klimenko. Inorg. Chim. Acta, 2021, 523, 120408. https://doi.org/10.1016/j.ica.2021.120408

    Article  CAS  Google Scholar 

  34. E. S. Koumousi, G. Lazari, S. Grammatikopoulos, C. Papatriantafyllopoulou, M. J. Manos, S. P. Perlepes, A. J. Tasiopoulos, G. Christou, and T. C. Stamatatos. Polyhedron, 2021, 206, 115298. https://doi.org/10.1016/j.poly.2021.115298

    Article  CAS  Google Scholar 

  35. P.-J. Huang and H. Miyasaka. Dalton Trans., 2020, 49, 16970-16978. https://doi.org/10.1039/D0DT03615C

    Article  CAS  PubMed  Google Scholar 

  36. H. Jeon, J. Kim, J. Kim, K.-B. Cho, and S. Hong. Chem. Commun., 2022, 58, 4623-4626. https://doi.org/10.1039/D2CC01129H

    Article  CAS  Google Scholar 

  37. J. Q. Wang, Y. Y. Luo, Y. X. Zhang, Y. Chen, F. Gao, Y. Ma, D. M. Xian, and Z. L. You. J. Coord. Chem., 2021, 74, 1028-1038. https://doi.org/10.1080/00958972.2020.1861603

    Article  CAS  Google Scholar 

  38. A. Akay, C. Arici, O. Atakol, H. Fuess, and I. Svoboda. J. Coord. Chem., 2006, 59, 933-938. https://doi.org/10.1080/00958970500410374

    Article  CAS  Google Scholar 

  39. A. Hazari, L. K. Das, R. M. Kadam, A. Bauza, A. Frontera, and A. Ghosh. Dalton Trans., 2015, 44, 3862-3876. https://doi.org/10.1039/C4DT03446E

    Article  CAS  PubMed  Google Scholar 

  40. B. Liu, J. Chai, S. Feng, and B. Yang. Spectrochim. Acta, Part A, 2015, 140, 437-443. https://doi.org/10.1016/j.saa.2015.01.012

    Article  CAS  Google Scholar 

  41. Y. Song, P. Gamez, O. Roubeau, I. Mutikainen, U. Turpeinen, and J. Reedijk. Inorg. Chim. Acta, 2005, 358, 109-115. https://doi.org/10.1016/j.ica.2004.07.033

    Article  CAS  Google Scholar 

  42. M. K. Taylor, J. Reglinski, L. E. A. Berlouis, and A. R. Kennedy. Inorg. Chim. Acta, 2006, 359, 2455-2464. https://doi.org/10.1016/j.ica.2006.01.039

    Article  CAS  Google Scholar 

  43. Bruker, SMART and SAINT. Madison, WI: Bruker AXS Inc., 2002.

  44. G. M. Sheldrick. SADABS. Göttingen, Germany: University of Göttingen, 1996.

  45. G. M. Sheldrick. Acta Crystallogr., Sect. A, 2015, 71, 3-8. https://doi.org/10.1107/S2053273314026370

    Article  Google Scholar 

  46. G. M. Sheldrick. Acta Crystallogr., Sect. C, 2015, 71, 3-8. https://doi.org/10.1107/S2053229614024218

    Article  Google Scholar 

  47. J. Meletiadis, J. F. G. M. Meis, J. W. Mouton, J. P. Donnelly, and P. E. Verweij. J. Clin. Microbiol., 2000, 38, 2949-2954. https://doi.org/10.1128/JCM.38.8.2949-2954.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. W. J. Geary. Coord. Chem. Rev., 1971, 7, 81-122. https://doi.org/10.1016/S0010-8545(00)80009-0

    Article  CAS  Google Scholar 

  49. A. W. Addison, T. N. Rao, J. Reedijk, J. van Rijn, and G. C. Verschoor. J. Chem. Soc., Dalton Trans., 1984, 7, 1349-1356. https://doi.org/10.1039/DT9840001349

    Article  Google Scholar 

  50. S. R. Korupoju, N. Mangayarkarasi, P. S. Zacharias, J. Mizuthani, and H. Nishihara. Inorg. Chem., 2002, 41, 4099-4101. https://doi.org/10.1021/ic0201102

    Article  CAS  PubMed  Google Scholar 

  51. V. K. Bhardwaj, M. S. Hundal, M. Corbella, V. Gomez, and G. Hundal. Polyhedron, 2012, 38, 224-234. https://doi.org/10.1016/j.poly.2012.03.029

    Article  CAS  Google Scholar 

  52. M. Dey, C. P. Rao, P. K. Saarenketo, and K. Rissanen. Inorg. Chem. Commun., 2002, 5, 924-928. https://doi.org/10.1016/S1387-7003(02)00602-0

    Article  CAS  Google Scholar 

  53. J. Reglinski, M. K. Taylor, and A. R. Kennedy. Inorg. Chem. Commun., 2006, 9, 736-739. https://doi.org/10.1016/j.inoche.2006.04.013

    Article  CAS  Google Scholar 

  54. P. K. Bhaumik, K. Harms, and S. Chattopadhyay. Polyhedron, 2014, 68, 346-356. https://doi.org/10.1016/j.poly.2013.10.031

    Article  CAS  Google Scholar 

  55. U. Kumar, J. Thomas, and N. Thirupathi. Inorg. Chem., 2010, 49, 62-72. https://doi.org/10.1021/ic901100z

    Article  CAS  Google Scholar 

  56. Y. Luo, J. Wang, B. Zhang, Y. Guan, T. Yang, X. Li, L. Xu, J. Wang, and Z. You. J. Coord. Chem., 2020, 73, 1765-1777. https://doi.org/10.1080/00958972.2020.1795645

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. You.

Ethics declarations

The authors declare that they have no conflicts of interests.

Additional information

Text © The Author(s), 2022, published in Zhurnal Strukturnoi Khimii, 2022, Vol. 63, No. 8, 99105.https://doi.org/10.26902/JSC_id99105

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, J., Liu, B., Liu, Y. et al. SYNTHESES, CRYSTAL STRUCTURES AND UREASE INHIBITORY ACTIVITIES OF ZnII AND NiII COMPLEXES DERIVED FROM 4,4′-DIMETHOXY-2,2′-(PROPANE-1,3- DIYLDIIMINODIMETHYLENE)DIPHENOL. J Struct Chem 63, 1371–1381 (2022). https://doi.org/10.1134/S0022476622080182

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476622080182

Keywords

Navigation