Skip to main content
Log in

CRYSTAL STRUCTURE OF COORDINATION COBALT(II) AND ZINC(II) POLYMERS WITH 1,4-DIAZABICYCLO[2.2.2]OCTANE N,N′-DIOXIDE

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Four cobalt(II) and zinc(II) cationic metal-organic frameworks (MOFs) based on bridging 1,4-diazabicyclo[2.2.2]octane N,N′-dioxide (odabco) are synthesized. In a mixture of N,N-dimethyl formamide (DMF) and water acidified with nitric acid, [Co(odabco)3](NO3)2 compound (I) is obtained. The synthesis in a mixture of dimethyl acetamide (DMA), acetic acid, and water results in the formation of [Co2(odabco)3(OAc)2](NO3)2 (II, OAc - acetate) MOF containing coordinated acetate anions. In DMF acidified with hydrochloric acid, [Zn2(odabco)3Cl2](NO3)2·DMF·2H2O, compound (III) containing coordinated chloride anions is obtained. In a mixture of DMA and water acidified with nitric acid, [Zn(odabco)2](NO3)2(Hodabco)NO3·0.83H2O MOF (IV) is synthesized. The structures of I-IV are determined by single crystal X-ray diffraction. In all structures, odabco acts as a bridging ligand forming cationic layered (II, III) or 3D (I, IV) coordination lattices and protonated guest chains {Hodabco+}n in IV. The cavities in the lattices of I-IV have total solvent-accessible volumes of 10%, 11%, 28%, and 56% respectively and accomodate \(\text{NO}_3^{-}\) counterions. Compounds I and II are the first examples of coordination polymers based on Co2+ and the odabco ligand. The influence of the synthetic conditions of I-IV on their structure is analyzed in comparison to each other and the previously published examples of structures with this ligand.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

REFERENCES

  1. M. Rafi Shaik, S. Farooq Adil, Z. A. Alothman, and O. M. Alduhaish. Crystals, 2022, 12, 151. https://doi.org/10.3390/cryst12020151

    Article  CAS  Google Scholar 

  2. Q. Wang, G. Yang, Y. Fu, N. Li, D. Hao, and S. Ma. ChemNanoMat, 2022, 8, e202100396. https://doi.org/10.1002/cnma.202100396

    Article  Google Scholar 

  3. P. A. Demakov, D. G. Samsonenko, D. N. Dybtsev, and V. P. Fedin. Russ. Chem. Bull. (Int. Ed.), 2022, 71, 83. https://doi.org/10.1007/s11172-022-3380-y

    Article  CAS  Google Scholar 

  4. D. N. Dybtsev and K. P. Bryliakov. Coord. Chem. Rev., 2021, 437, 213845. https://doi.org/10.1016/j.ccr.2021.213845

    Article  CAS  Google Scholar 

  5. M. Rafi Shaik, S. Farooq Adil, Z. A. Alothman, and O. M. Alduhaish. Crystals, 2022, 12, 151. https://doi.org/10.3390/cryst12020151

    Article  CAS  Google Scholar 

  6. Q. Wang, G. Yang, Y. Fu, N. Li, D. Hao, and S. Ma. ChemNanoMat, 2022, 8, e202100396. https://doi.org/10.1002/cnma.202100396

    Article  Google Scholar 

  7. S. Mukherjee, D. Sensharma, O. T. Qazvini, S. Dutta, L. K. Macreadie, S. K. Ghosh, and R. Babarao. Coord. Chem. Rev., 2021, 437, 213852. https://doi.org/10.1016/j.ccr.2021.213852

    Article  CAS  Google Scholar 

  8. A. A. Lysova, K. A. Kovalenko, D. N. Dybtsev, S. N. Klyamkin, E. A. Berdonosova, and V. P. Fedin. Microporous Mesoporous Mater., 2021, 328, 111477. https://doi.org/10.1016/j.micromeso.2021.111477

    Article  CAS  Google Scholar 

  9. Y. Li, Y. Wang, W. Fan, and D. Sun. Dalton Trans., 2022, 51, 4608. https://doi.org/10.1039/D1DT03842G

    Article  CAS  PubMed  Google Scholar 

  10. A. S. Zaguzin, T. S. Sukhikh, B. A. Kolesov, M. N. Sokolov, V. P. Fedin, and S. A. Adonin. Polyhedron, 2022, 212, 115587. https://doi.org/10.1016/j.poly.2021.115587

    Article  CAS  Google Scholar 

  11. D. Zhao, K. Yu, X. Han, Y. He, and B. Chen. Chem. Commun., 2022, 58, 747. https://doi.org/10.1039/D1CC06261A

    Article  CAS  Google Scholar 

  12. F. Saraci, V. Quezada-Novoa, P. R. Donnarumma, and A. J. Howarth. Chem. Soc. Rev., 2020, 49, 7949. https://doi.org/10.1039/D0CS00292E

    Article  CAS  PubMed  Google Scholar 

  13. Y. Zhao, H. Zeng, X.-W. Zhu, W. Lu, and D. Li. Chem. Soc. Rev., 2021, 50, 4484. https://doi.org/10.1039/D0CS00955E

    Article  CAS  PubMed  Google Scholar 

  14. D. I. Pavlov, A. A. Ryadun, and A. S. Potapov. Molecules, 2021, 26, 7392. https://doi.org/10.3390/molecules26237392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. S.-J. Wang, Q. Li, G.-L. Xiu, L.-X. You, F. Ding, R. Van Deun, I. Dragutan, V. Dragutan, and Y.-G. Sun. Dalton Trans., 2021, 50, 15612. https://doi.org/10.1039/D1DT02687A

    Article  CAS  PubMed  Google Scholar 

  16. P. A. Demakov, A. A. Vasileva, S. S. Volynkin, A. A. Ryadun, D. G. Samsonenko, V. P. Fedin, and D. N. Dybtsev. Molecules, 2021, 26, 5145. https://doi.org/10.3390/molecules26175145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. V. D. Slyusarchuk, P. E. Kruger, and C. S. Hawes. ChemPlusChem, 2020, 85, 845. https://doi.org/10.1002/cplu.202000206

    Article  CAS  PubMed  Google Scholar 

  18. P. A. Demakov, A. S. Poryvaev, K. A. Kovalenko, D. G. Samsonenko, M. V. Fedin, V. P. Fedin, and D. N. Dybtsev. Inorg. Chem., 2020, 59, 15724. https://doi.org/10.1021/acs.inorgchem.0c02125

    Article  CAS  PubMed  Google Scholar 

  19. D. Meng, R. Zheng, Y. Zhao, E. Zhang, L. Dou, and Y. Yang. Adv. Mater., 2022, 34, 2107330. https://doi.org/10.1002/adma.202107330

    Article  CAS  Google Scholar 

  20. C. Martin, D. Jonckheere, E. Coutino-Gonzalez, S. Smolders, B. Bueken, C. Marquez, A. Krajnc, T. Willhammar, K. Kennes, O. Fenwick, F. Richard, P. Samorì, G. Mali, J. Hofkens, M. B. J. Roeffaers, and D. E. De Vos. Chem. Commun., 2022, 58, 677. https://doi.org/10.1039/D1CC05214D

    Article  CAS  Google Scholar 

  21. M. I. Rogovoy, A. S. Berezin, D. G. Samsonenko, and A. V. Artem'ev. Inorg. Chem., 2021, 60, 6680. https://doi.org/10.1021/acs.inorgchem.1c00480

    Article  CAS  PubMed  Google Scholar 

  22. C. Gharbi, B. Toumi, S. Soudani, F. Lefebvre, W. Kaminsky, C. Jelsch, C. Ben Nasr, and L. Khedhiri. J. Mol. Struct., 2022, 1257, 132620. https://doi.org/10.1016/j.molstruc.2022.132620

    Article  CAS  Google Scholar 

  23. A. Kertik, L. H. Wee, K. Sentosun, J. A. R. Navarro, S. Bals, J. A. Martens, and I. F. J. Vankelecom. ACS Appl. Mater. Interfaces, 2020, 12, 2952. https://doi.org/10.1021/acsami.9b17820

    Article  CAS  Google Scholar 

  24. A. Gutiérrez-Serpa, T. Kundu, J. Pasán, A. I. Jiménez-Abizanda, S. Kaskel, I. Senkovska, and V. Pino. ACS Appl. Mater. Interfaces, 2022, 14, 4510. https://doi.org/10.1021/acsami.1c21284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. A. Husna, I. Hossain, I. Jeong, and T.-H. Kim. Polymers, 2022, 14, 655. https://doi.org/10.3390/polym14040655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. G. Brito-Santos, C. Hernández-Rodríguez, B. Gil-Hernández, B. González-Díaz, I. R. Martín, R. Guerrero-Lemus, and J. Sanchiz. Dalton Trans., 2022, 51, 3146. https://doi.org/10.1039/D1DT04248C

    Article  CAS  PubMed  Google Scholar 

  27. A. Kuzminova, M. Dmitrenko, A. Zolotarev, A. Korniak, D. Poloneeva, A. Selyutin, A. Emeline, A. Yushkin, A. Foster, P. Budd, and S. Ermakov. Membranes, 2022, 12, 14. https://doi.org/10.3390/membranes12010014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. O. M. Yaghi and H. Li. J. Am. Chem. Soc., 1995, 117, 10401. https://doi.org/10.1021/ja00146a033

    Article  CAS  Google Scholar 

  29. A. J. Blake, N. R. Champness, P. Hubberstey, W.-S. Li, M. A. Withersby, and M. Schröder. Coord. Chem. Rev., 1999, 183, 117. https://doi.org/10.1016/S0010-8545(98)00173-8

  30. S. A. Barnett and N. R. Champness. Coord. Chem. Rev., 2003, 246, 145. https://doi.org/10.1016/S0010-8545(03)00121-8

    Article  CAS  Google Scholar 

  31. R. J. Hill, D.-L. Long, N. R. Champness, P. Hubberstey, and M. Schröder. Acc. Chem. Res., 2005, 38, 335. https://doi.org/10.1021/ar040174b

    Article  CAS  PubMed  Google Scholar 

  32. D.-L. Long, A. J. Blake, N. R. Champness, and M. Schröder. Chem. Commun., 2000, 2000, 1369. https://doi.org/10.1039/B002363I

    Article  Google Scholar 

  33. D.-L. Long, A. J. Blake, N. R. Champness, C. Wilson, and M. Schroder. Angew. Chem., Int. Ed., 2001, 40, 2443. https://doi.org/10.1002/1521-3773(20010702)40:13<2443::AID-ANIE2443>3.0.CO;2-C

    Article  Google Scholar 

  34. D.-L. Long, R. J. Hill, A. J. Blake, N. R. Champness, P. Hubberstey, C. Wilson, and M. Schröder. Chem. Eur. J., 2005, 11, 1384. https://doi.org/10.1002/chem.200400594

    Article  CAS  PubMed  Google Scholar 

  35. L. Chen, Q. Ji, X. Wang, Q. Pan, X. Cao, and G. Xu. CrystEngComm, 2017, 19, 5907. https://doi.org/10.1039/C7CE00964J

    Article  CAS  Google Scholar 

  36. P. A. Demakov, A. S. Romanov, D. G. Samsonenko, D. N. Dybtsev, and V. P. Fedin. Russ. Chem. Bull. (Int. Ed.), 2020, 69, 1511. https://doi.org/10.1007/s11172-020-2930-4

    Article  CAS  Google Scholar 

  37. P. A. Demakov, Y. A. Yudina, D. G. Samsonenko, D. N. Dybtsev, and V. P. Fedin. J. Struct. Chem., 2021, 62, 403. https://doi.org/10.1134/S0022476621030069

    Article  CAS  Google Scholar 

  38. CrysAlisPro 1.171.38.46. Rigaku Oxford Diffraction, 2015.

  39. G. M. Sheldrick. Acta Crystallogr., Sect. A, 2015, 71, 3. https://doi.org/10.1107/S2053273314026370

    Article  Google Scholar 

  40. G. M. Sheldrick. Acta Crystallogr., Sect. C, 2015, 71, 3. https://doi.org/10.1107/S2053229614024218

    Article  Google Scholar 

  41. A. L. Spek. Acta Crystallogr., Sect. C, 2015, 71, 9. https://doi.org/10.1107/S2053229614024929

    Article  CAS  Google Scholar 

  42. P. A. Demakov, D. G. Samsonenko, D. N. Dybtsev, and V. P. Fedin. Russ. Chem. Bull. (Int. Ed.), 2022, 71, 83. https://doi.org/10.1007/s11172-022-3380-y

    Article  CAS  Google Scholar 

Download references

Funding

The work was supported by Russian Scientific Foundation grant No. 22-23-20179, https://rscf.ru/project/22-23-20179/ and the Government of the Novosibirsk Oblast’ (Agreement No. p-22).

The analytical service was supported by project No. 121031700321-3 of the Ministry of Science and Higher Education of the Russian Federation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Fedin.

Ethics declarations

The authors declare that they have no conflicts of interests.

Additional information

Russian Text © The Author(s), 2022, published in Zhurnal Strukturnoi Khimii, 2022, Vol. 63, No. 8, 99095.https://doi.org/10.26902/JSC_id97415

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abasheeva, K.D., Demakov, P.A., Dybtsev, D.N. et al. CRYSTAL STRUCTURE OF COORDINATION COBALT(II) AND ZINC(II) POLYMERS WITH 1,4-DIAZABICYCLO[2.2.2]OCTANE N,N′-DIOXIDE. J Struct Chem 63, 1349–1357 (2022). https://doi.org/10.1134/S0022476622080169

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476622080169

Keywords

Navigation