Skip to main content
Log in

SYNTHESIS AND STRUCTURE OF PALLADACYCLOPENTADIENYL COMPLEX WITH ACENAPHTHENE-1,2-DIIMINE LIGAND

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

The organometallic complex [Pd(dpp-bian)(C4(COOMe)4)]·(C2H5)2O (1·(C2H5)2O) is obtained by the interaction of [Pd2(dba)3] (dba = dibenzylideneacetone) with dimethyl ether of acetylenedicarboxylic acid and 1,2-bis[(2,6-diisopropylphenyl)imino]acenaphthene (dpp-bian) in the 1:4:2 molar ratio. During the oxidative addition reaction the 1,2,3,4-tetrakis(methoxycarbonyl)buta-1,3-dienyl dianion is formed from two molecules of dimethyl ether of acetylenedicarboxylic acid. This dianion is coordinated to palladium(II) via 1 and 4 carbon atoms with the formation of the palladacyclopentadienyl moiety. The crystal structure is determined by the single crystal X-ray diffraction analysis. The 1·(C2H5)2O compound crystallizes in the orthorhombic crystal system (Pbca) with unit cell parameters a = 16.9069(3) Å, b = 23.5618(6) Å, c = 23.8902(7) Å, V = 9516.83(40) Å3. Each palladium atom has an almost square planar environment composed of two dpp-bian nitrogen atoms and two carbon atoms of the (C4(COOMe)4)2– anion. The cyclic voltammogram of 1 in acetonitrile reveals irreversible oxidation at Ea = 1.43 V, reversible reduction at E1/2 = 0.62 V, and irreversible reduction at Eb = 1.52 V. The electronic structure of complex 1 is studied within the density functional theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2

Similar content being viewed by others

REFERENCES

  1. T. Tezgerevska, K. G. Alley, and C. Boskovic. Coord. Chem. Rev., 2014, 268, 23-40. https://doi.org/10.1016/j.ccr.2014.01.014

    Article  CAS  Google Scholar 

  2. N. F. Romashev, A. L. Gushchin, I. S. Fomenko, P. A. Abramov, I. V. Mirzaeva, N. B. Kompankov, D. B. Kalnyi, and M. N. Sokolov. Polyhedron, 2019, 173, 114110. https://doi.org/10.1016/j.poly.2019.114110

    Article  CAS  Google Scholar 

  3. N. F. Romashev, I. V. Mirzaeva, I. V. Bakaev, V. I. Komlyagina, V. Y. Komarov, I. S. Fomenko, and A. L. Gushchin. J. Struct. Chem., 2022, 63(2), 242-251. https://doi.org/10.1134/s0022476622020056

    Article  CAS  Google Scholar 

  4. A. L. Gushchin, N. F. Romashev, A. A. Shmakova, P. A. Abramov, M. R. Ryzhikov, I. S. Fomenko, and M. N. Sokolov. Mendeleev Commun., 2020, 30(1), 81-83. https://doi.org/10.1016/j.mencom.2020.01.027

    Article  CAS  Google Scholar 

  5. N. F. Romashev, P. A. Abramov, I. V. Bakaev, I. S. Fomenko, D. G. Samsonenko, A. S. Novikov, K. K. H. Tong, D. Ahn, P. V. Dorovatovskii, Y. V. Zubavichus, A. A. Ryadun, O. A. Patutina, M. N. Sokolov, M. V. Babak, and A. L. Gushchin. Inorg. Chem., 2022, 61(4), 2105-2118. https://doi.org/10.1021/acs.inorgchem.1c03314

    Article  CAS  PubMed  Google Scholar 

  6. A. N. Lukoyanov, I. S. Fomenko, M. I. Gongola, L. S. Shulpina, N. S. Ikonnikov, G. B. Shulpin, S. Y. Ketkov, G. K. Fukin, R. V. Rumyantcev, A. S. Novikov, V. A. Nadolinny, M. N. Sokolov, and A. L. Gushchin. Molecules, 2021, 26(18), 5706. https://doi.org/10.3390/molecules26185706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. I. S. Fomenko, A. L. Gushchin, L. S. Shulpina, N. S. Ikonnikov, P. A. Abramov, N. F. Romashev, A. S. Poryvaev, A. M. Sheveleva, A. S. Bogomyakov, N. Y. Shmelev, M. V. Fedin, G. B. Shulpin, and M. N. Sokolov. New J. Chem., 2018, 42(19), 16200-16210. https://doi.org/10.1039/c8nj03358g

    Article  CAS  Google Scholar 

  8. I. L. Fedushkin, O. V. Maslova, A. G. Morozov, S. Dechert, S. Demeshko, and F. Meyer. Angew. Chem. Int. Ed., 2012, 51(42), 10584-10587. https://doi.org/10.1002/anie.201204452

    Article  CAS  Google Scholar 

  9. D. A. Razborov, A. N. Lukoyanov, E. V. Baranov, and I. L. Fedushkin. Dalton Trans., 2015, 44(47), 20532-20541. https://doi.org/10.1039/c5dt03174e

    Article  CAS  PubMed  Google Scholar 

  10. J. Bendix and K. M. Clark. Angew. Chem., 2016, 128(8), 2798-2802. https://doi.org/10.1002/ange.201510403

    Article  Google Scholar 

  11. W. Kaim and B. Schwederski. Coord. Chem. Rev., 2010, 254(13/14), 1580-1588. https://doi.org/10.1016/j.ccr.2010.01.009

    Article  CAS  Google Scholar 

  12. J. M. Rose, A. E. Cherian, and G. W. Coates. J. Am. Chem. Soc., 2006, 128(13), 4186/4187. https://doi.org/10.1021/ja058183i

    Article  CAS  PubMed  Google Scholar 

  13. D. H. Leung, J. W. Ziller, and Z. Guan. J. Am. Chem. Soc., 2008, 130(24), 7538/7539. https://doi.org/10.1021/ja8017847

    Article  CAS  PubMed  Google Scholar 

  14. D. J. Tempel, L. K. Johnson, R. L. Huff, P. S. White, and M. Brookhart. J. Am. Chem. Soc., 2000, 122(28), 6686-6700. https://doi.org/10.1021/ja000893v

    Article  CAS  Google Scholar 

  15. J. Flapper and J. N. H. Reek. Angew. Chem. Int. Ed., 2007, 46(45), 8590-8592. https://doi.org/10.1002/anie.200703294

    Article  CAS  Google Scholar 

  16. A. E. Cherian, J. M. Rose, E. B. Lobkovsky, and G. W. Coates. J. Am. Chem. Soc., 2005, 127(40), 13770/13771. https://doi.org/10.1021/ja0540021

    Article  CAS  PubMed  Google Scholar 

  17. B. S. Williams, M. D. Leatherman, P. S. White, and M. Brookhart. J. Am. Chem. Soc., 2005, 127(14), 5132-5146. https://doi.org/10.1021/ja045969s

    Article  CAS  PubMed  Google Scholar 

  18. L. Li, C. S. B. Gomes, P. T. Gomes, M. T. Duarte, and Z. Fan. Dalton Trans., 2011, 40(13), 3365. https://doi.org/10.1039/c0dt01308k

    Article  CAS  PubMed  Google Scholar 

  19. M. Villa, D. Miesel, A. Hildebrandt, F. Ragaini, D. Schaarschmidt, and A. J. von Wangelin. ChemCatChem, 2017, 9(16), 3203-3209. https://doi.org/10.1002/cctc.201700144

    Article  CAS  Google Scholar 

  20. A. Scarel, M. R. Axet, F. Amoroso, F. Ragaini, C. J. Elsevier, A. Holuigue, C. Carfagna, L. Mosca, and B. Milani. Organometallics, 2008, 27(7), 1486-1494. https://doi.org/10.1021/om7011858

    Article  CAS  Google Scholar 

  21. L. Li, P. S. Lopes, V. Rosa, C. A. Figueira, M. A. N. D. A. Lemos, M. T. Duarte, T. Avilés, and P. T. Gomes. Dalton Trans., 2012, 41(17), 5144. https://doi.org/10.1039/c2dt11854h

    Article  CAS  PubMed  Google Scholar 

  22. M. Viganò, F. Ragaini, M. G. Buonomenna, R. Lariccia, A. Caselli, E. Gallo, S. Cenini, J. C. Jansen, and E. Drioli. ChemCatChem, 2010, 2(9), 1150-1164. https://doi.org/10.1002/cctc.201000044

    Article  CAS  Google Scholar 

  23. M. Gholinejad, V. Karimkhani, and I. Kim. Appl. Organomet. Chem., 2014, 28(4), 221-224. https://doi.org/10.1002/aoc.3110

    Article  CAS  Google Scholar 

  24. C. D. Nunes, P. D. Vaz, V. Félix, L. F. Veiros, T. Moniz, M. Rangel, S. Realista, A. C. Mourato, and M. J. Calhorda. Dalton Trans., 2015, 44(11), 5125-5138. https://doi.org/10.1039/c4dt03174a

    Article  CAS  PubMed  Google Scholar 

  25. J. Bernauer, J. Pölker, and A. J. von Wangelin. ChemCatChem, 2022, 14(1). https://doi.org/10.1002/cctc.202101182

    Article  PubMed  PubMed Central  Google Scholar 

  26. I. S. Fomenko and A. L. Gushchin. Russ. Chem. Rev., 2020, 89(9), 966-998. https://doi.org/10.1070/rcr4949

    Article  CAS  Google Scholar 

  27. H. Suzuki, K. Itoh, Y. Ishii, K. Simon, and J. A. Ibers. J. Am. Chem. Soc., 1976, 98(26), 8494-8500. https://doi.org/10.1021/ja00442a030

    Article  CAS  Google Scholar 

  28. C. G. Pierpont, R. M. Buchanan, and H. H. Downs. J. Organomet. Chem., 1977, 124(1), 103-112. https://doi.org/10.1016/s0022-328x(00)90053-6

    Article  CAS  Google Scholar 

  29. L. Canovese, C. Santo, T. Scattolin, F. Visentin, and V. Bertolasi. J. Organomet. Chem., 2015, 794, 288-300. https://doi.org/10.1016/j.jorganchem.2015.07.014

    Article  CAS  Google Scholar 

  30. G. Sánchez, J. Vives, J. L. Serrano, J. Pérez, and G. López. Inorg. Chim. Acta, 2002, 328(1), 74-80. https://doi.org/10.1016/s0020-1693(01)00688-0

    Article  Google Scholar 

  31. Y. Yamamoto, A. Nagata, H. Nagata, Y. Ando, Y. Arikawa, K. Tatsumi, and K. Itoh. Chem. – Eur. J., 2003, 9(11), 2469-2483. https://doi.org/10.1002/chem.200204540

    Article  CAS  PubMed  Google Scholar 

  32. H. K. Wagner, N. Ansmann, T. Gentner, H. Wadepohl, and J. Ballmann. Organometallics, 2021, 40(6), 804-812. https://doi.org/10.1021/acs.organomet.1c00052

    Article  CAS  Google Scholar 

  33. G. Sánchez, J. Vives, G. López, J. L. Serrano, L. García, and J. Pérez. Eur. J. Inorg. Chem., 2005, 2005(12), 2360-2367. https://doi.org/10.1002/ejic.200401047

    Article  CAS  Google Scholar 

  34. L. Canovese, F. Visentin, G. Chessa, P. Uguagliati, C. Levi, and A. Dolmella. Organometallics, 2005, 24(23), 5537-5548. https://doi.org/10.1021/om058036t

    Article  CAS  Google Scholar 

  35. J. L. Serrano, I. J. S. Fairlamb, G. Sánchez, L. García, J. Pérez, J. Vives, G. López, C. M. Crawforth, and R. J. K. Taylor. Eur. J. Inorg. Chem., 2004, 2004(13), 2706-2715. https://doi.org/10.1002/ejic.200300962

    Article  CAS  Google Scholar 

  36. K. Fukuzumi, Y. Nishii, and M. Miura. Angew. Chem., 2017, 129(41), 12920-12924. https://doi.org/10.1002/ange.201707515

    Article  Google Scholar 

  37. R. van Belzen, R. A. Klein, H. Kooijman, N. Veldman, A. L. Spek, and C. J. Elsevier. Organometallics, 1998, 17(9), 1812-1825. https://doi.org/10.1021/om970977l

    Article  CAS  Google Scholar 

  38. A. Paulovicova, U. El-Ayaan, K. Shibayama, T. Morita, and Y. Fukuda. Eur. J. Inorg. Chem., 2001, 2001(10), 2641-2646. https://doi.org/10.1002/1099-0682(200109)2001:10<2641::aid-ejic2641>3.0.co;2-c

    Article  Google Scholar 

  39. G. M. Sheldrick. Acta Crystallogr., Sect. A: Found. Adv., 2015, 71(1), 3-8. https://doi.org/10.1107/s2053273314026370

    Article  Google Scholar 

  40. G. M. Sheldrick. Acta Crystallogr., Sect. C: Struct. Chem., 2015, 71(1), 3-8. https://doi.org/10.1107/s2053229614024218

    Article  Google Scholar 

  41. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, and H. Puschmann. J. Appl. Crystallogr., 2009, 42(2), 339-341. https://doi.org/10.1107/s0021889808042726

    Article  CAS  Google Scholar 

  42. ADF2017, SCM. Amsterdam, The Netherlands: Theoretical Chemistry, Vrije Universiteit, 2017. https://www.scm.com

  43. S. Grimme, S. Ehrlich, and L. Goerigk. J. Comput. Chem., 2011, 32(7), 1456-1465. https://doi.org/10.1002/jcc.21759

    Article  CAS  PubMed  Google Scholar 

  44. E. Van Lenthe and E. J. Baerends. J. Comput. Chem., 2003, 24(9), 1142-1156. https://doi.org/10.1002/jcc.10255

    Article  CAS  PubMed  Google Scholar 

  45. E. van Lenthe, R. van Leeuwen, E. J. Baerends, and J. G. Snijders. Int. J. Quantum Chem., 1996, 57(3), 281-293. https://doi.org/10.1002/(sici)1097-461x(1996)57:3<281::aid-qua2>3.0.co;2-u

    Article  CAS  Google Scholar 

  46. R. F. W. Bader. Atoms in Molecules. A Quantum Theory. Oxford: Clarendon Press, 1990.

  47. A. E. Reed, R. B. Weinstock, and F. Weinhold. J. Chem. Phys., 1985, 83(2), 735-746. https://doi.org/10.1063/1.449486

    Article  CAS  Google Scholar 

Download references

Funding

The work was supported by RFBR (grant No. 21-13-00092) and the Ministry of Sciences and Higher Education of the Russian Federation (project No. 121031700315-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Gushchin.

Ethics declarations

The authors declare that they have no conflicts of interests.

Additional information

Russian Text © The Author(s), 2022, published in Zhurnal Strukturnoi Khimii, 2022, Vol. 63, No. 8, 96304.https://doi.org/10.26902/JSC_id96304

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romashev, N.F., Bakaev, I.V., Komlyagina, V.I. et al. SYNTHESIS AND STRUCTURE OF PALLADACYCLOPENTADIENYL COMPLEX WITH ACENAPHTHENE-1,2-DIIMINE LIGAND. J Struct Chem 63, 1304–1312 (2022). https://doi.org/10.1134/S002247662208011X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002247662208011X

Keywords

Navigation