Skip to main content
Log in

AN INVESTIGATION INTO THE IMPACT OF INTRODUCED THIOCYANATE ANIONS ON THE TRINUCLEAR Co(II) SALAMO-BASED COMPLEX

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

The reaction of Co(OAc)2·4H2O with multisite coordinated salamo-based ligand H2L containning six coordinating sites in presence of co-ligand NCS anions afforded successfully a trinuclear Co(II) complex [Co3(L)2(NCS)2]. The trinuclear Co(II) complex has been characterized by elemental analyses, UV-Vis, Fourier transform infrared spectroscopic methods and DFT calculation. In addition, the structure of the Co(II) complex has been confirmed by single crystal X-ray crystallography. X-ray crystal structure analysis of the Co(II) complex revealed that the Co(II) complex consists of three Co(II) atoms coordinated by two fully deprotonated ligand (L)2– units and co-ligand NCS anions. The close surveillance of the crystal structure of the Co(II) complex discloses some notable non-covalent interactions like H-bonding, C-H⋯π and π⋯π. The luminescent property of the Co(II) complex has been studied in methanol solution. Apart from, as a complementary revelation, intermolecular interactions with respect to percentages of hydrogen bondings in the X-ray crystal structure of the trinuclear Co(II) complex was quantified by analyses of Hirshfeld surfaces and fingerprint plots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

REFERENCES

  1. P. Mahapatraa, M. G. B. Drewb, and A. Ghosh. Dalton Trans., 2020, 49, 3372-3374. https://doi.org/10.1039/D0DT90033H

    Article  CAS  PubMed  Google Scholar 

  2. T. Feng, L. L. Li, Y. J. Li, and W. K. Dong. Acta Crystallogr., Sect. B, 2021, 77, 168-181. https://doi.org/10.1107/s2052520620016157

    Article  CAS  Google Scholar 

  3. K. Ghosh, K. Harms, A. Bauz, A. Frontera, and S. Chattopadhyay. Dalton Trans., 2018, 47, 331-347. https://doi.org/10.1039/C7DT03929H

    Article  CAS  PubMed  Google Scholar 

  4. D. J. Majumdar, S. Dey, S. S. Sreekumar, S. Das, D. Das, R. K. Metre, K. Bankura, and D. Mishra. ChemistrySelect, 2018, 3, 12371-12382. https://doi.org/10.1002/slct.201802996

    Article  CAS  Google Scholar 

  5. E. Tsuchida and K. Oyaizu. Coord. Chem. Rev., 2003, 237, 213-228. https://doi.org/10.1016/S0010-8545(02)00251-5

    Article  CAS  Google Scholar 

  6. C. Adhikary and S. Koner. Coord. Chem. Rev., 2010, 254, 2933-2958. https://doi.org/10.1016/j.ccr.2010.06.001

    Article  CAS  Google Scholar 

  7. K. L. Gurunatha and T. K. Maji. Inorg. Chem., 2009, 48, 10886-10888. https://doi.org/10.1021/ic901804a

    Article  CAS  PubMed  Google Scholar 

  8. J. H. He, J. J. Ke, P. H. Chang, K. T. Tsai, P. C. Yang, and I. M. Chan. Nanoscale, 2012, 4, 3399-3404. https://doi.org/10.1039/C2NR30688C

    Article  CAS  PubMed  Google Scholar 

  9. J. Chen, Z. Zhang, Z. Bao, Y. Su, H. Xing, Q. Yang, and Q. Ren. ACS Appl. Mater. Interfaces, 2017, 9, 9772-9777. https://doi.org/10.1021/acsami.7b00562

    Article  CAS  PubMed  Google Scholar 

  10. M. Strianese, D. Guarnieri, M. Lamberti, A. Landi, A. Peluso, and C. Pellecchia. Inorg. Chem., 2020, 59, 15977-15986. https://doi.org/10.1021/acs.inorgchem.0c02499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. S. Akine, S. Kagiyama, and T. Nabeshima. Inorg. Chem., 2010, 49, 2141-2152. https://doi.org/10.1021/ic9019926

    Article  CAS  PubMed  Google Scholar 

  12. R. N. Bian, X. Xu, T. Feng, and W. K. Dong. Inorg. Chim. Acta, 2021, 516, 120098-120108. https://doi.org/10.1016/j.ica.2020.120098

    Article  CAS  Google Scholar 

  13. J. F. Wang, R. N. Bian, T. Feng, K. F. Xie, L. Wang, and Y. J. Ding. Microchem. J., 2021, 160, 105676-105681. https://doi.org/10.1016/j.microc.2020.105676

    Article  CAS  Google Scholar 

  14. X. Xu, Y. J. Li, T. Feng, W. K. Dong, and Y. J. Ding. Luminescence, 2021, 36, 169-179. https://doi.org/10.1002/bio.3932

    Article  CAS  PubMed  Google Scholar 

  15. R. N. Bian, J. F. Wang, X. Xu, X. Y. Dong, and Y. J. Ding. Appl. Organomet. Chem., 2021, 35, e6040-e6054. https://doi.org/ 10.1002/aoc.6040

    Article  Google Scholar 

  16. K. F. Xie, L. L. Li, and W. K. Dong. J. Struct. Chem., 2021, 62(6), 876-888. https://doi.org/10.1134/S002247662106007X

    Article  CAS  Google Scholar 

  17. Y. F. Cui, C. Liu, Y. Zhang, and Y. Zhang. Inorg. Nano-Met. Chem., 2021, 1, 288-295. https://doi.org/10.1080/24701556.2020.1776735

    Article  CAS  Google Scholar 

  18. R. Kumar, T. Guchhait, V. Subramaniyan, C. Schulzke, and G. Mani. Dalton Trans., 2020, 49, 13840-13853. https://doi.org/10.1039/D0DT02964E

    Article  CAS  PubMed  Google Scholar 

  19. Y. J. Li, S. Z. Guo, T. Feng, K. F. Xie, and W. K. Dong. J. Mol. Struct., 2021, 1228, 129796-129806. https://doi.org/10.1016/j.molstruc.2020.129796

    Article  CAS  Google Scholar 

  20. J. F. Wang, X. Xu, R. N. Bian, W. K. Dong, and Y. J. Ding. Inorg. Chim. Acta, 2021, 516, 120095-1200105. https://doi.org/10.1016/j.ica.2020.120095

    Article  CAS  Google Scholar 

  21. Y. H. Deng, Y. J. Yan, J. Zhang, L. P. Na, Y. Zhang, and W. K. Dong. Inorg. Chem., 2021, 61, 1018-1030. https://doi.org/10.1021/acs.inorgchem.1c03066

    Article  CAS  PubMed  Google Scholar 

  22. A. Sumiyoshi, Y. Chiba, R. Matsuoka, T. Noda, and T. Nabeshima. Dalton Trans., 2019, 48, 13169-13175. https://doi.org/10.1039/C9DT02403D

    Article  CAS  PubMed  Google Scholar 

  23. J. P. Costes, S. M. Ladeira, L. Vendier, R. Maurice, and W. Wernsdorfer. Dalton Trans., 2019, 48, 2019-2027. https://doi.org/10.1039/C8DT04716B

    Article  CAS  PubMed  Google Scholar 

  24. M. P. Davydova, I. A. Bauer, V. K. Brel, M. I. Rakhmanova, I. Y. Bagryanskaya, and A. V. Artemev. Eur. J. Inorg. Chem., 2020, 8, 695-703. https://doi.org/10.1002/ejic.201901213

    Article  CAS  Google Scholar 

  25. J. V. Handy, G. Ayala, and R. D. Pike. Inorg. Chim. Acta, 2017, 456, 64-75. https://doi.org/10.1016/j.ica.2016.11.013

    Article  CAS  Google Scholar 

  26. A. V. Artemev, M. Z. Shafikov, A. Schinabeck, O. V. Antonova, A. S. Berezin, I. Yu. Bagryanskaya, P. E. Plusnin, and H. Yersin. Inorg. Chem. Front., 2019, 6, 3168. https://doi.org/10.1039/C9QI01069F

    Article  CAS  Google Scholar 

  27. B. Machura, M. Wolff, and J. Palion. Struct Chem., 2011, 22, 1053-1064. https://doi.org/10.1016/j.poly.2014.04.025

    Article  CAS  Google Scholar 

  28. J. Boonmak, M. Nakano, N. Chaichit, C. Pakawatchai, and Y. Youngme. Inorg. Chem., 2011, 50, 7324-7333. https://doi.org/10.1021/ic201035c

    Article  CAS  PubMed  Google Scholar 

  29. Bruker, APEX2 and SAINT. Madison, WI: Bruker AXS Inc., 2007.

  30. G. M. Sheldrick. SADABS: Program for Empirical Absorption correction of Area Detector Data. Göttingen, Germany: University of Göttingen, 1996.

  31. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, and H. Puschmann. J. Appl. Crystallogr., 2009, 42, 339-341. https://doi.org/10.1107/S0021889808042726

    Article  CAS  Google Scholar 

  32. Y. Zhang, L. L. Li, S. S. Feng, T. Feng, and W. K. Dong. Russ. J. Gen. Chem., 2021, 91, 2069-2078. https://doi.org/10.1134/S1070363221100248

    Article  CAS  Google Scholar 

  33. P. Li, G. X. Yao, M. Li, and W. K. Dong. Polyhedron, 2021, 195, 114981-114992. https://doi.org/10.1016/j.poly.2020.114981

    Article  CAS  Google Scholar 

  34. X. Xu, T. Feng, S. S. Feng, and W. K. Dong. Appl. Organomet. Chem., 2021, 35, e6057-e6070. https://doi.org/10.1016/10.1002/aoc.6057

    Article  Google Scholar 

  35. J. F. Wang, T. Feng, Y. J. Li, Y. X. Sun, W. K. Dong, and Y. J. Ding. J. Mol. Struct., 2021, 1231, 129950-129964. https://doi.org/10.1016/j.molstruc.2021.129950

    Article  CAS  Google Scholar 

  36. S. Z. Zhang, G. Guo, W. M. Ding, J. Li, Y. Wu, H. J. Zhang, J. Q. Guo, and Y. X. Sun. J. Mol. Struct., 2021, 1230, 129627-12635. https://doi.org/10.1016/j.molstruc.2020.129627

    Article  CAS  Google Scholar 

  37. Y. D. Peng, R. Y. Li, P. Li, and Y. X. Sun. Crystals, 2021, 11, 113-124. https://doi.org/10.3390/cryst11020113

    Article  CAS  Google Scholar 

  38. S. Dietmar. J. Organomet. Chem., 1978, 156, C47/C48. https://doi.org/10.1016/S0022-328X(00)93553-8

    Article  Google Scholar 

  39. Y. Zhang, M. Yu, Y. Q. Pan, Y. Zhang, L. Xu, and X. Y. Dong. Appl. Organomet. Chem., 2020, 34, e5442-e5455. https://doi.org/10.1002/aoc.5442

    Article  Google Scholar 

  40. S. Akine and T. Nabeshima. Heteroatom Chem., 2014, 25, 410-421. https://doi.org/10.1002/hc.21205

    Article  CAS  Google Scholar 

  41. X. X. An, C. Liu, Z. Z. Chen, K. F. Xie, and W. K. Dong. Crystals, 2019, 9, 602-617. https://doi.org/10.3390/cryst9110602

    Article  CAS  Google Scholar 

  42. D. Pugliese, N. G. Boetti, J. Lousteau, E. C. Ginistrelli, E. Bertone, F. Geobaldo, and D. Milanese. J. Alloys Compd., 2016, 657, 678-683. https://doi.org/10.1016/j.jallcom.2015.10.126

    Article  CAS  Google Scholar 

  43. Y. Zhang, Y. Q. Pan, M. Yu, X. Xu, and W. K. Dong. Appl. Organomet. Chem., 2019, 33, e5240. https://doi.org/10.1002/aoc.5240

    Article  Google Scholar 

  44. M. A. Spackman and D. Jayatilaka. CrystEngComm, 2009, 11, 19-32. https://doi.org/10.1039/B818330A

    Article  CAS  Google Scholar 

  45. J. J. McKinnon, D. Jayatilaka, and M. A. Spackman. Chem. Commun., 2007, 37, 3814. https://doi.org/10.1039/B107147P

    Article  Google Scholar 

  46. P. R. Spackman, M. J. Turner, J. J. McKinnon, S. K. Wolff, D. J. Grimwood, D. Jayatilaka, and M. A. Spackman. J. Appl. Crystallogr., 2021, 54, 1006-1011. https://doi.org/10.1107/S1600576721002910

    Article  CAS  Google Scholar 

  47. M. A. Spackman and J. J. McKinnon. CrystEngComm, 2002, 66, 378-392. https://doi.org/10.1039/B203191B

    Article  CAS  Google Scholar 

  48. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox. Gaussian09, Revision A.1. Wallingford CT: Gaussian Inc., 2009.

  49. K. Kim and Y. K. Han. Theor. Chem. Acc., 2005, 113, 233-237. https://doi.org/10.1007/s00214-005-0630-7

    Article  CAS  Google Scholar 

  50. J. Aihara. J. Phys. Chem. A, 1999, 103, 7487-7495. https://doi.org/10.1021/jp990092i

    Article  CAS  Google Scholar 

  51. Y. Zhang, L. L. Li, S. S. Feng, and W. K. Dong. Russ. J. Gen. Chem., 2021, 91, 2069-2078. https://doi.org/10.1134/S1070363221100248

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (21761018), which is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W.-K. Dong.

Ethics declarations

The authors declare that they have no conflicts of interests.

Additional information

Text © The Author(s), 2022, published in Zhurnal Strukturnoi Khimii, 2022, Vol. 63, No. 8, 96112.https://doi.org/10.26902/JSC_id96112

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, KF., Huang, Y., Li, SZ. et al. AN INVESTIGATION INTO THE IMPACT OF INTRODUCED THIOCYANATE ANIONS ON THE TRINUCLEAR Co(II) SALAMO-BASED COMPLEX. J Struct Chem 63, 1262–1273 (2022). https://doi.org/10.1134/S0022476622080078

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476622080078

Keywords

Navigation