Skip to main content
Log in

STUDY OF Pt/Ce-Mn-Ox CATALYSTS FOR THE LOW-TEMPERATURE CO OXIDATION REACTION

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

The possibility to obtain low-temperature active platinum-based catalysts is investigated. Catalysts of the composition Pt/Ce1–xMnxO2–δ are synthesized in two steps: firstly, Ce1–xMnxO2–δ carriers with different manganese concentrations (10-30 at.%) are obtained by co-precipitation, then final catalysts are prepared by impregnating with platinum nitrate. The introduction of manganese into the carrier composition is found to decrease the platinum load to the required one for anomalous low-temperature СО oxidation at Т < 0 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

REFERENCES

  1. P. Barn, L. Giles, M.-E. Héroux, and T. Kosatsky. Environ. Health, 2018, 17(1), 13. https://doi.org/10.1186/s12940-018-0357-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. A. I. Boronin, E. M. Slavinskaya, A. Figueroba, A. I. Stadnichenko, T. Y. Kardash, O. A. Stonkus, E. A. Fedorova, V. V. Muravev, V. A. Svetlichnyi, A. Bruix, and K. M. Neyman. Appl. Catal., B, 2021, 286, 119931. https://doi.org/10.1016/j.apcatb.2021.119931

    Article  CAS  Google Scholar 

  3. L. Lukashuk, N. Yigit, R. Rameshan, E. Kolar, D. Teschner, M. Hävecker, A. Knop-Gericke, R. Schlögl, K. Föttinger, and G. Rupprechter. ACS Catal., 2018, 8(9), 8630-8641. https://doi.org/10.1021/acscatal.8b01237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. M. Haruta. ChemInform, 2004, 35(48). https://doi.org/10.1002/chin.200448226

    Article  Google Scholar 

  5. H. S. Gandhi, G. W. Graham, and R. W. McCabe. J. Catal., 2003, 216(1/2), 433-442. https://doi.org/10.1016/s0021-9517(02)00067-2

    Article  CAS  Google Scholar 

  6. P. Bera, K. C. Patil, V. Jayaram, G. N. Subbanna, and M. S. Hegde. J. Catal., 2000, 196(2), 293-301. https://doi.org/10.1006/jcat.2000.3048

    Article  CAS  Google Scholar 

  7. G. Pattrick, E. van der Lingen, C. W. Corti, R. J. Holliday, and D. T. Thompson. Top. Catal., 2004, 30/31, 273-279. https://doi.org/10.1023/b:toca.0000029762.14168.d8

    Article  CAS  Google Scholar 

  8. E. M. Slavinskaya, R. V. Gulyaev, A. V. Zadesenets, O. A. Stonkus, V. I. Zaikovskii, Y. V. Shubin, S. V. Korenev, and A. I. Boronin. Appl. Catal., B, 2015, 166/167, 91-103. https://doi.org/10.1016/j.apcatb.2014.11.015

    Article  CAS  Google Scholar 

  9. D. Delimaris and T. Ioannides. Appl. Catal., B, 2009, 89(1/2), 295-302. https://doi.org/10.1016/j.apcatb.2009.02.003

    Article  CAS  Google Scholar 

  10. S. Colussi, M. Boaro, L. de Rogatis, A. Pappacena, C. de Leitenburg, J. Llorca, and A. Trovarelli. Catal. Today, 2015, 253, 163-171. https://doi.org/10.1016/j.cattod.2015.02.028

    Article  CAS  Google Scholar 

  11. T. Montini, M. Melchionna, M. Monai, and P. Fornasiero. Chem. Rev., 2016, 116(10), 5987-6041. https://doi.org/10.1021/acs.chemrev.5b00603

    Article  CAS  PubMed  Google Scholar 

  12. Q. Fu, H. Saltsburg, and M. Flytzani-Stephanopoulos. Science, 2003, 301(5635), 935-938. https://doi.org/10.1126/science.1085721

    Article  CAS  PubMed  Google Scholar 

  13. B. Qiao, A. Wang, X. Yang, L. F. Allard, Z. Jiang, Y. Cui, J. Liu, J. Li, and T. Zhang. Nat. Chem., 2011, 3(8), 634-641. https://doi.org/10.1038/nchem.1095

    Article  CAS  Google Scholar 

  14. D. Kunwar, S. Zhou, A. DeLaRiva, E. J. Peterson, H. Xiong, X. I. Pereira-Hernández, S. C. Purdy, R. ter Veen, H. H. Brongersma, J. T. Miller, H. Hashiguchi, L. Kovarik, S. Lin, H. Guo, Y. Wang, and A. K. Datye. ACS Catal., 2019, 9(5), 3978-3990. https://doi.org/10.1021/acscatal.8b04885

    Article  CAS  Google Scholar 

  15. Y.-Q. Su, L. Zhang, V. Muravev, and E. J. M. Hensen. Chin. J. Catal., 2020, 41(6), 977-984. https://doi.org/10.1016/s1872-2067(19)63468-6

    Article  CAS  Google Scholar 

  16. E. M. Slavinskaya, A. V. Zadesenets, O. A. Stonkus, A. I. Stadnichenko, A. V. Shchukarev, Y. V. Shubin, S. V. Korenev, and A. I. Boronin. Appl. Catal., B, 2020, 277, 119275. https://doi.org/10.1016/j.apcatb.2020.119275

    Article  CAS  Google Scholar 

  17. P. Bera and M. S. Hegde. RSC Adv., 2015, 5(115), 94949-94979. https://doi.org/10.1039/c5ra16474e

    Article  CAS  Google Scholar 

  18. M. Kurnatowska, L. Kepinski, and W. Mista. Appl. Catal., B, 2012, 117/118, 135-147. https://doi.org/10.1016/j.apcatb.2011.12.034

    Article  CAS  Google Scholar 

  19. D. Delimaris and T. Ioannides. Appl. Catal., B, 2008, 84(1/2), 303-312. https://doi.org/10.1016/j.apcatb.2008.04.006

    Article  CAS  Google Scholar 

  20. O. A. Bulavchenko, T. N. Afonasenko, A. R. Osipov, A. A. Pochtar, A. A. Saraev, and E. Y. Gerasimov. Catal. Lett., 2021, 151(10), 2906-2918. https://doi.org/10.1007/s10562-021-03542-7

    Article  CAS  Google Scholar 

  21. J. F. Moulder, W. F. Strickle, P. E. Sobol, and K. D. Bomben. A Reference Book of Standart Spectra for Identification and Interpretation of XPS Data. USA: Perkin-Elmer Corporation Physical Electronics, 1992.

  22. M. Vorokhta, I. Khalakhan, I. Matolínová, J. Nováková, S. Haviar, J. Lančok, M. Novotný, H. Yoshikawa, and V. Matolín. Appl. Surf. Sci., 2017, 396, 278-283. https://doi.org/10.1016/j.apsusc.2016.10.119

    Article  CAS  Google Scholar 

  23. A. I. Stadnichenko, V. V. Muravev, S. V. Koscheev, V. I. Zaikovskii, H. A. Aleksandrov, K. M. Neyman, and A. I. Boronin. Surf. Sci., 2019, 679, 273-283. https://doi.org/10.1016/j.susc.2018.10.002

    Article  CAS  Google Scholar 

  24. L. S. Kibis, A. A. Simanenko, A. I. Stadnichenko, V. I. Zaikovskii, and A. I. Boronin. J. Phys. Chem. C, 2021, 125(38), 20845-20854. https://doi.org/10.1021/acs.jpcc.1c04646

    Article  CAS  Google Scholar 

  25. A. I. Stadnichenko, V. V. Muravev, V. A. Svetlichnyi, and A. I. Boronin. J. Struct. Chem., 2017, 58(6), 1152-1159. https://doi.org/10.1134/s0022476617060129

    Article  CAS  Google Scholar 

  26. R. V. Gulyaev, T. Y. Kardash, S. E. Malykhin, O. A. Stonkus, A. S. Ivanova, and A. I. Boronin. Phys. Chem. Chem. Phys., 2014, 16(26), 13523-13539. https://doi.org/10.1039/c4cp01033g

    Article  CAS  PubMed  Google Scholar 

  27. M. Vorokhta, I. Khalakhan, I. Matolínová, M. Kobata, H. Yoshikawa, K. Kobayashi, and V. Matolín. Appl. Surf. Sci., 2013, 267, 119-123. https://doi.org/10.1016/j.apsusc.2012.08.036

    Article  CAS  Google Scholar 

  28. M. Chigane and M. Ishikawa. J. Electrochem. Soc., 2000, 147(6), 2246. https://doi.org/10.1149/1.1393515

    Article  CAS  Google Scholar 

  29. M. Toupin, T. Brousse, and D. Bélanger. Chem. Mater., 2004, 16(16), 3184-3190. https://doi.org/10.1021/cm049649j

    Article  CAS  Google Scholar 

  30. Y. Gorlin, B. Lassalle-Kaiser, J. D. Benck, S. Gul, S. M. Webb, V. K. Yachandra, J. Yano, and T. F. Jaramillo. J. Am. Chem. Soc., 2013, 135(23), 8525-8534. https://doi.org/10.1021/ja3104632

    Article  CAS  PubMed  Google Scholar 

  31. K. Lei, X. Han, Y. Hu, X. Liu, L. Cong, F. Cheng, and J. Chen. Chem. Commun., 2015, 51(58), 11599-11602. https://doi.org/10.1039/c5cc03155a

    Article  CAS  Google Scholar 

  32. M. Oku, K. Hirokawa, and S. Ikeda. J. Electron Spectrosc. Relat. Phenom., 1975, 7(5), 465-473. https://doi.org/10.1016/0368-2048(75)85010-9

    Article  CAS  Google Scholar 

  33. V. Matolín, I. Khalakhan, I. Matolínová, M. Václavů, K. Veltruská, and M. Vorokhta. Surf. Interface Anal., 2010, 42(6/7), 882-885. https://doi.org/10.1002/sia.3327

    Article  CAS  Google Scholar 

  34. A. Bruix, Y. Lykhach, I. Matolínová, A. Neitzel, T. Skála, N. Tsud, M. Vorokhta, V. Stetsovych, K. Ševčíková, J. Mysliveček, R. Fiala, M. Václavů, K. C. Prince, S. Bruyère, V. Potin, F. Illas, V. Matolín, J. Libuda, and K. M. Neyman. Angew. Chem., Int. Ed., 2014, 53(39), 10525-10530. https://doi.org/10.1002/anie.201402342

    Article  CAS  Google Scholar 

  35. D. A. Svintsitskiy, L. S. Kibis, A. I. Stadnichenko, S. V. Koscheev, V. I. Zaikovskii, and A. I. Boronin. ChemPhysChem, 2015, 16(15), 3318-3324. https://doi.org/10.1002/cphc.201500546

    Article  CAS  PubMed  Google Scholar 

  36. E. I. Vovk, A. V. Kalinkin, M. Y. Smirnov, I. O. Klembovskii, and V. I. Bukhtiyarov. J. Phys. Chem. C, 2017, 121(32), 17297-17304. https://doi.org/10.1021/acs.jpcc.7b04569

    Article  CAS  Google Scholar 

  37. E. A. Derevyannikova, T. Y. Kardash, A. I. Stadnichenko, O. A. Stonkus, E. M. Slavinskaya, V. A. Svetlichnyi, and A. I. Boronin. J. Phys. Chem. C, 2019, 123(2), 1320-1334. https://doi.org/10.1021/acs.jpcc.8b11009

    Article  CAS  Google Scholar 

  38. P. Mars and D. W. van Krevelen. Chem. Eng. Sci., 1954, 3, 41-59. https://doi.org/10.1016/s0009-2509(54)80005-4

    Article  CAS  Google Scholar 

  39. A. Jan, J. Shin, J. Ahn, S. Yang, K. J. Yoon, J.-W. Son, H. Kim, J.-H. Lee, and H.-I. Ji. RSC Adv., 2019, 9(46), 27002-27012. https://doi.org/10.1039/c9ra05965b

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. J. L. Vincent and P. A. Crozier. Nat. Commun., 2021, 12(1), 5789. https://doi.org/10.1038/s41467-021-26047-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. T. Y. Kardash, E. A. Derevyannikova, E. M. Slavinskaya, A. I. Stadnichenko, V. A. Maltsev, A. V. Zaikovskii, S. A. Novopashin, A. I. Boronin, and K. M. Neyman. Front. Chem., 2019, 7. https://doi.org/10.3389/fchem.2019.00114

    Article  PubMed  PubMed Central  Google Scholar 

  42. D. A. H. Cunningham, W. Vogel, and M. Haruta. Catal. Lett., 1999, 63(1/2), 43-47. https://doi.org/10.1023/A:1019088131252

    Article  CAS  Google Scholar 

  43. C.-J. Jia, M. Schwickardi, C. Weidenthaler, W. Schmidt, S. Korhonen, B. M. Weckhuysen, and F. Schüth. J. Am. Chem. Soc., 2011, 133(29), 11279-11288. https://doi.org/10.1021/ja2028926

    Article  CAS  PubMed  Google Scholar 

  44. D. A. Svintsitskiy, I. Y. Pakharukov, E. M. Slavinskaya, T. Y. Kardash, V. N. Parmon, and A. I. Boronin. ChemCatChem, 2016, 8(22), 3546-3555. https://doi.org/10.1002/cctc.201600802

    Article  CAS  Google Scholar 

Download references

Funding

The work was supported by RFBR and the Government of the Novosibirsk Oblast’ within research project No. 20-43-540009 and also with partial support of the Ministry of Science and Higher Education of the Russian Federation within State Assignment for the Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences (project АААА-А21-121011390053-4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Stadnichenko.

Ethics declarations

The authors declare that they have no conflicts of interests.

Additional information

Russian Text © The Author(s), 2022, published in Zhurnal Strukturnoi Khimii, 2022, Vol. 63, No. 8, 95129.https://doi.org/10.26902/JSC_id95129

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stadnichenko, A.I., Simanenko, A.A., Slavinskaya, E.M. et al. STUDY OF Pt/Ce-Mn-Ox CATALYSTS FOR THE LOW-TEMPERATURE CO OXIDATION REACTION. J Struct Chem 63, 1199–1214 (2022). https://doi.org/10.1134/S0022476622080017

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476622080017

Keywords

Navigation