Skip to main content
Log in

SYNTHESIS FEATURES AND STRUCTURAL CHARACTERIZATION OF CARBON NANOWALLS PREPARED FROM ORGANOBORON COMPOUNDS

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

The work presents data on the practical relevance of carbon nanowalls, methods of their deposition, particularly plasma-enhanced ones, and the mechanisms of their formation to demonstrate the specific character of the deposition from organoboron precursors. A procedure for the preparation of plate-like carbon sheets in the form of vertically aligned carbon nanowalls on Si(100) substrates is developed and implemented. The procedure includes a stage of plasma-enhanced deposition from vapors of organoboron compounds at 600-800 °C and subsequent annealing at 900 °C. Trimethylborate, triethylborate, and triisopropylborate are used for the first time to produce carbon nanowalls. It is studied how the composition and structure of carbon nanowalls prepared on Si(100) substrates depend on the origin of the initial organoboron compound and the synthesis temperature. The obtained carbon nanowalls consist of small crystallites but exhibit high degree of graphitization and phase purity. A mechanism of carbon nanowall nucleation and growth is proposed and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

REFERENCES

  1. B. Ajeian, H. D. Beckey, A. Maas, and U. Nitschke. Appl. Phys., 1975, 6, 111-118. https://doi.org/10.1007/BF00883557

    Article  CAS  Google Scholar 

  2. Y. Ando, X. Zhao, and M. Ohkohchi. Carbon, 1997, 35, 153-158. https://doi.org/10.1016/S0008-6223(96)00139-X

    Article  CAS  Google Scholar 

  3. Y. Wu, P. Qiao, T. Chong, and Z. Shen. Adv. Mater., 2002, 14, 64-67. https://doi.org/10.1002/1521-4095(20020104)14:1%3C64::AID-ADMA64%3E3.0.CO;2-G

    Article  CAS  Google Scholar 

  4. M. Hiramatsu and M. Hori. Carbon Nanowalls: Synthesis and Emerging Applications. Wien, New York: Springer, 2010.

  5. S. Ghosh, S. R. Polaki, N. Kumar, S. Amirthapandian, M. Kamruddin, and K.(K.) Ostrikov. Beilstein J. Nanotechnol., 2017, 8, 1658-1670. https://doi.org/10.3762/bjnano.8.166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. N. M. Santhosh, G. Filipic, E. Tatarova, O. Baranov, H. Kondo, M. Sekine, M. Hori, K.(K.) Ostrikov, and U. Cvelba. Micromachines, 2018, 9, 565. https://doi.org/10.3390/mi9110565

    Article  PubMed Central  Google Scholar 

  7. N. G. Shang, F. C. K. Au, X. M. Meng, C. S. Lee, I. Bello, and S. T. Lee. Chem. Phys. Lett., 2002, 358, 187-191. https://doi.org/10.1016/S0009-2614(02)00430-X

    Article  CAS  Google Scholar 

  8. G. Xiong, P. He, L. Liu, T. Chen, and T. S. Fisher. J. Mater. Chem. A, 2015, 3, 22940-22948. https://doi.org/10.1039/C5TA05441A

    Article  CAS  Google Scholar 

  9. E. Cappelli, S. Orlando, G. Mattei, C. Scilletta, F. Corticelli, and P. Ascarelli. Appl. Phys. A, 2004, 79, 2063-2068. https://doi.org/10.1007/s00339-004-2862-0

    Article  CAS  Google Scholar 

  10. P. He and S. Chen. ChemElectroChem, 2021, 8, 783-797. https://doi.org/10.1002/celc.202001364

    Article  CAS  Google Scholar 

  11. J. J. Wang, M. Y. Zhu, R. A. Outlaw, X. Zhao, D. M. Manos, B. C. Holloway, and V. P. Mammana. Appl. Phys. Lett., 2004, 85(7), 1265-1267. https://doi.org/10.1063/1.1782253

    Article  CAS  Google Scholar 

  12. G. M. Mikheyev, R. G. Zonov, A. N. Obraztsov, and D. G. Kalyuzhnyy. Prib. Tekh. Eksp., 2008, (3), 137-142.

  13. E. I. Givargizov. Rost nitevidnykh i plastinchatykh kristallov iz para (Growth of Whiskers and Lamellar Crystals from Steam). Moscow: Nauka, 1977. [In Russian]

  14. M. S. Mauter and M. Elimelech. Environ. Sci. Technol., 2008, 42(16), 5843-5859, https://doi.org/10.1021/es8006904

    Article  CAS  PubMed  Google Scholar 

  15. J. Chen, Z. Bo, and G. Lu. Vertically-Oriented Graphene: PECVD Synthesis and Applications. Cham, Switzerland: Springer International Publishing, 2015. https://doi.org/10.1007/978-3-319-15302-5

    Book  Google Scholar 

  16. S. Kwon, H. Choi, S. Lee, G. Lee, Y. Kim, W. Choi, and H. Kang. Mater. Res. Bull., 2021, 141, 111377. https://doi.org/10.1016/j.materresbull.2021.111377

    Article  CAS  Google Scholar 

  17. H. Choi, S. H. Kwon, H. Kang, J. H. Kim, and W. Choi. Thin Solid Films, 2020, 700, 137887. https://doi.org/10.1016/j.tsf.2020.137887

    Article  CAS  Google Scholar 

  18. M. Brodowski, M. Kowalski, M. Skwarecka, K. Pałka, M. Skowicki, A. Kula, T. Lipiński, A. Dettlaff, M. Ficek, J. Ryl, K. Dziąbowska, D. Nidzworski, and R. Bogdanowicz. Talanta, 2021, 221, 121623. https://doi.org/10.1016/j.talanta.2020.121623

    Article  CAS  PubMed  Google Scholar 

  19. S. Hussain, R. Amade, A. Boyd, A. Musheghyan-Avetisyan, I. Alshaikh, J. Martí-Gonzalez, E. Pascual, B.J. Meenan, and E. Bertran-Serra. Ceramurgia Int., 2021, 47, 21751-21758. https://doi.org/10.1016/j.ceramint.2021.04.190

    Article  CAS  Google Scholar 

  20. B. Yang, Y. Wu, B. Zong, and Z. Shen. Nano Lett., 2002, 2(7), 751-754. https://doi.org/10.1021/nl025572r

    Article  CAS  Google Scholar 

  21. P. Russo, M. Xiao, and N. Y. Zhou. Carbon, 2017, 120, 54-62. https://doi.org/10.1016/j.carbon.2017.05.004

    Article  CAS  Google Scholar 

  22. V. A. Krivchenko, S. A. Evlashin, K. V. Mironovich, N. I. Verbitskiy, A. Nefedov, C. Woll, A. Ya. Kozmenkova, N. V. Suetin, S. E. Svyakhovskiy, D. V. Vyalikh, A. T. Rakhimov, A. V. Egorov, and L. V. Yashina. Sci. Rep., 2013, 3, 3328. https://doi.org/10.1038/srep03328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. S. Vizireanu, M. D. Ionita, G. Dinescu, I. Enculescu, M. Baibarac, and I. Baltog. Plasma Processes Polym., 2012, 9, 363-370. https://doi.org/10.1002/ppap.201100153

    Article  CAS  Google Scholar 

  24. A. Vesel, R. Zaplotnik, G. Primc, and M. Mozetic. Materials, 2019, 12, 2968. https://doi.org/10.3390/ma12182968

    Article  CAS  PubMed Central  Google Scholar 

  25. J.-H. Deng, R.-T. Zheng, Y. Zhao, and G.-A. Cheng. ACS Nano, 2012, 6, 3727-3733. https://doi.org/10.1021/nn300900v

    Article  CAS  PubMed  Google Scholar 

  26. S. Shimabukuro, Y. Hatakeyama, M. Takeuchi, T. Itoh, and S. Nonomura. Jpn. J. App. Phys., 2008, 47(11), 8635-8640. https://doi.org/10.1143/JJAP.47.8635

    Article  CAS  Google Scholar 

  27. S. Shimabukuro, Y. Hatakeyama, M. Takeuchi, T. Itoh, and S. Nonomura. Thin Solid Films, 2008, 516, 710-713. https://doi.org/10.1016/j.tsf.2007.06.181

    Article  CAS  Google Scholar 

  28. J. Kulczyk-Malecka, I. V. J. dos Santos, M. Betbeder, S. J. Rowley-Neale, Z. Gao, and P. J. Kelly. Thin Solid Films, 2021, 733, 138801. https://doi.org/10.1016/j.tsf.2021.138801

    Article  CAS  Google Scholar 

  29. K. Davami, M. Shaygan, N. Kheirabi, J. Zhao, D. A. Kovalenko, M. H. Rummeli, J. Opitz, G. Cuniberti, J.-S. Lee, and M. Meyyappan. Carbon, 2014, 72, 372-380. https://doi.org/10.1016/j.carbon.2014.02.025

    Article  CAS  Google Scholar 

  30. L. Cui, J. Chen, B. Yang, D. Sun, and T. Jiao. Appl. Surf. Sci., 2015, 357, 1-7. https://doi.org/10.1016/j.apsusc.2015.08.252

    Article  CAS  Google Scholar 

  31. M. Pierpaoli, M. Ficek, M. Rycewicz, M. Sawczak, J. Karczewski, M. L. Ruello, and R. Bogdanowicz. Materials, 2019, 12, 547. https://doi.org/10.3390/ma12030547

    Article  CAS  PubMed Central  Google Scholar 

  32. W. Takeuchi, K. Takeda, M. Hiramatsu, Y. Tokuda, H. Kano, S. Kimura, O. Sakata, H. Tajiri, and M. Hori. Phys. Status Solidi A, 2010, 207(1), 139-143. https://doi.org/10.1002/pssa.200925230

    Article  CAS  Google Scholar 

  33. C. B. Parker, A. S. Raut, B. Brown, B. R. Stoner, and J. T. Glass. J. Mater. Res., 2012, 27(7), 1046-1053. https://doi.org/10.1557/jmr.2012.43

    Article  CAS  Google Scholar 

  34. L. Zeng, D. Lei, W. Wang, J. Liang, Z. Wang, N. Yao, and B. Zhang. Appl. Surf. Sci., 2008, 254, 1700-1704. https://doi.org/10.1016/j.apsusc.2007.07.131

    Article  CAS  Google Scholar 

  35. L. Jiang, T. Yang, F. Liu, J. Dong, Z. Yao, C. Shen, S. Deng, N. Xu, Y. Liu, and H.-J. Gao. Adv. Mater., 2013, 25, 250-255. https://doi.org/10.1002/adma.201203902

    Article  CAS  PubMed  Google Scholar 

  36. A. N. Obraztsov, E. A. Obraztsova, A. V. Tyurnina, and A. A. Zolotukhin. Carbon, 2007, 45, 2017-2021. https://doi.org/10.1016/j.carbon.2007.05.028

    Article  CAS  Google Scholar 

  37. Z. Bo, K. Yu, G. Lu, P. Wang, S. Mao, and J. Chen. Carbon, 2011, 49(6), 1849-1858. https://doi.org/10.1016/j.carbon.2011.01.007

    Article  CAS  Google Scholar 

  38. M. Acosta Gentoiu, R. Betancourt-Riera, S. Vizireanu, I. Burducea, V. Marascu, S. D. Stoica, B. I. Bita, G. Dinescu, and R. Riera. J. Nanomater., 2017, 2017, 1374973. https://doi.org/10.1155/2017/1374973

    Article  CAS  Google Scholar 

  39. J. Sun, T. Rattanasawatesun, P. Tang, Z. Bi, S. Pandit, L. Lam, C. Wasén, M. Erlandsson, M. Bokarewa, J. Dong, F. Ding, F. Xiong, and I. Mijakovic. ACS Appl. Mater. Interfaces, 2022, 14, 7152-7160. https://doi.org/10.1021/acsami.1c21640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. M. Hiramatsu, K. Shiji, H. Amano, and M. Hori. Appl. Phys. Lett., 2004, 84, 4708-4710. https://doi.org/10.1063/1.1762702

    Article  CAS  Google Scholar 

  41. S. Kondo, M. Hori, K. Yamakawa, S. Den, H. Kano, and M. Hiramatsu. J. Vac. Sci. Technol., B, 2008, 26, 1294-1300. https://doi.org/10.1116/1.2938397

    Article  CAS  Google Scholar 

  42. K. Lehmann, O. Yurchenko, and G. Urban. RSC Adv., 2016, 6, 32779. https://doi.org/10.1039/C6RA02999J

    Article  CAS  Google Scholar 

  43. A. Giese, S. Schipporeit, V. Buck, and N. Wöhrl. Beilstein J. Nanotechnol., 2018, 9, 1895-1905. https://doi.org/10.3762/bjnano.9.181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. H. Chatei, M. Belmahi, M. B. Assouar, L. Le Brizoual, P. Bourson, and J. Bougdira. Diamond Relat. Mater., 2006, 15(4-8), 1041-1046. https://doi.org/10.1016/j.diamond.2005.10.025

    Article  CAS  Google Scholar 

  45. S. Kondo, S. Kawai, W. Takeuchi, K. Yamakawa, S. Den, H. Kano, M. Hiramatsu, and M. Hori. J. Appl. Phys., 2009, 106, 094302. https://doi.org/10.1063/1.3253734

    Article  CAS  Google Scholar 

  46. K. Yu, Z. Bo, G. Lu, S. Mao, S. Cui, Y. Zhu, X. Chen, R. S. Ruoff, and J. Chen. Nanoscale Res. Lett., 2011, 6, 202. https://doi.org/10.1186/1556-276X-6-202

    Article  PubMed  PubMed Central  Google Scholar 

  47. M. Mesko, V. Vretenar, P. Kotrusz, M. Hulman, J. Soltys, and V. Skakalova. Phys. Status Solidi B, 2012, 249(12), 2625-2628. https://doi.org/10.1002/pssb.201200144

    Article  CAS  Google Scholar 

  48. S. Mori, T. Ueno, and M. Suzuki. Diamond Relat. Mater., 2011, 20, 1129-1132. https://doi.org/10.1016/j.diamond.2011.06.021

    Article  CAS  Google Scholar 

  49. M. Yuan, T. Zhou, J. He, and L. Chen. Appl. Surf. Sci., 2016, 382, 27-33. https://doi.org/10.1016/j.apsusc.2016.04.080

    Article  CAS  Google Scholar 

  50. F.-H. Lin, C.-K. Hsu, T.-P. Tang, P.-L. Kang, and F.-F. Yang. Mater. Chem. Phys., 2008, 107, 115-121. https://doi.org/10.1016/j.matchemphys.2007.06.053

    Article  CAS  Google Scholar 

  51. A. A. Martin, P. J. Depond, M. Bagge-Hansen, J. R. I. Lee, J.-H. Yoo, S. Elhadj, M. J. Matthews, and T. van Buuren. J. Vac. Sci. Technol., B, 2018, 36, 020601-1-020601-5, https://doi.org/10.1116/1.5019742

    Article  CAS  Google Scholar 

  52. J.-H. Park, C.-K. Jung, D.-C. Lim, and J.-H. Boo. Tribology Inter., 2007, 40, 345-349. https://doi.org/10.1016/j.triboint.2005.09.026

    Article  CAS  Google Scholar 

  53. D. Dietrich, U. Roll, S. Stöckel, K. Weise, and G. Marx. Anal. Bioanal. Chem., 2002, 374, 712-714. https://doi.org/10.1007/s00216-002-1452-2

    Article  CAS  PubMed  Google Scholar 

  54. T. Zhao, X. Wang, and F. Sun. Surf. Rev. Lett., 2018, 25, 1850039, https://doi.org/10.1142/S0218625X17500901

    Article  CAS  Google Scholar 

  55. L. Wang, J. Liu, T. Tang, F. Sun, and N. Xie. Surf. Rev. Lett., 2017, 24, 1750090, https://doi.org/10.1142/S0218625X17500901

    Article  CAS  Google Scholar 

  56. Z. N. Tetana, S. D. Mhlanga, and N. J. Coville. Diamond Relat. Mater., 2017, 74, 70-80. https://doi.org/10.1016/j.diamond.2017.02.005

    Article  CAS  Google Scholar 

  57. M. E. Bartram and H. K. Moffat. J. Vac. Sci. Technol., A, 1994, 12, 1027-1031, https://doi.org/10.1116/1.579279

    Article  CAS  Google Scholar 

  58. N. Lu, X. Quan, J. Y. Li, S. Chen, H. T. Yu, and G. H. Chen. J. Phys. Chem. C, 2007, 111, 11836-11842. https://doi.org/10.1021/jp071359d

    Article  CAS  Google Scholar 

  59. X. Jiang, P. Willich, M. Paul, and C-P. Klages. J. Mater. Res., 1999, 14(8), 3211-3220. https://doi.org/10.1557/JMR.1999.0434

    Article  CAS  Google Scholar 

  60. M. Yin, L. Zhao, X. Xu, and S. Wang. Jpn. J. Appl. Phys., 2008, 47, 1735-1739. https://doi.org/10.1143/JJAP.47.1735

    Article  CAS  Google Scholar 

  61. V. Y. Vassiliev, J. Z. Zheng, S. K. Tang, W. Lu, J. Hua, and Y. S. Lina. J. Electrochem. Soc., 1999, 146, 3039-3051. https://doi.org/10.1149/1.1392048

    Article  CAS  Google Scholar 

  62. J. Pola, N. Herlin-Boime, J. Brus, Z. Bastl, K. Vacek, J. Šubrt, and V. Vorliček. Solid State Sci., 2005, 7, 123-131. https://doi.org/10.1016/j.solidstatesciences.2004.10.001

    Article  CAS  Google Scholar 

  63. A. Gencer and B. S. Oksal. J. Sol-Gel. Sci. Technol., 2015, 73, 171-180. https://doi.org/10.1007/s10971-014-3508-0

    Article  CAS  Google Scholar 

  64. H. Wang, Y. Zhou, D. Wu, L. Liao, S. Zhao, H. Peng, and Z. Liu. Small, 2013, 9(8), 1316-1320. https://doi.org/10.1002/smll.201203021

    Article  CAS  PubMed  Google Scholar 

  65. R. Matsumoto, E. H. S. Sadki, H. Tanaka, S. Yamamoto, S. Adachi, A. Younis, H. Takeya, and Y. Takano. Thin Solid Films, 2021, 730, 138704. https://doi.org/10.1016/j.tsf.2021.138704

    Article  CAS  Google Scholar 

  66. A. A. Martin and P. J. Depond. Beilstein J. Nanotechnol., 2018, 9, 1282-1287. https://doi.org/10.3762/bjnano.9.120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. O. M. Moon, B.-C. Kang, S.-B. Lee, and J.-H. Boo. Thin Solid Films, 2004, 464/465, 164-169. https://doi.org/10.1016/j.tsf.2004.05.107

    Article  CAS  Google Scholar 

  68. V. A. Shestakov, V. I. Kosyakov, and M. L. Kosinova. Russ. Chem. Bull., Int. Ed., 2019, 68(11), 1983-1990. https://doi.org/10.1007/s11172-019-2656-3

    Article  CAS  Google Scholar 

  69. V. A. Shestakov, V. I. Kosyakov, and M. L. Kosinova. Mater. Today: Proc., 2019, 16, 88-94. https://doi.org/10.1016/j.matpr.2019.05.250

    Article  CAS  Google Scholar 

  70. V. I. Kosyakov, V. A. Shestakov, and M. L. Kosinova. Russ. J. Inorg. Chem., 2018, 63(6), 822-825. https://doi.org/10.1134/S0036023618060153

    Article  CAS  Google Scholar 

  71. M. G. Milvidskii, O. V. Pelevin, and B. A. Sakharov. Fiziko-khimicheskie osnovy polucheniya razlagayushchikhsya poluprovodnikovykh soyedinenii (Physical and Chemical Bases for Obtaining Decomposing Semiconductor Compounds). Moscow: Metallurgiya, 1974. [In Russian]

  72. L. M. Viting. Vysokotemperaturnyye rastvory-rasplavy (High-Temperature Solutions-Melts). Moscow: Mosk. Gos. Univ., 1991. [In Russian]

  73. N. N. Smirnyagina, B. B. Tsyrenzhapov, and A. S. Milonov. Zh. Fiz. Khim., 2006, 80(11), 2081-2086. [In Russian]

  74. A. Feltz. Amorphe und glasartige anorganische Festkörper. Berlin, Germany: Akademie-Verlag, 1983.

  75. V. P. Pukh, L. G. Baikova, M. F. Kireenko, L. V. Tikhonova, T. P. Kazannikova, and A. B. Sinani. Fiz. Tverd. Tela, 2005, 47(5), 850-855. [In Russian]

  76. V. G. Kesler, M. L. Kosinova, Y. M. Rumyantsev, and V. S. Sulyaeva. J. Struct. Chem., 2012, 53(4), 699-707. https://doi.org/10.1134/s0022476612040129

    Article  CAS  Google Scholar 

  77. M. Putkonen and L. Niinistö. Thin Solid Films, 2006, 514, 145-149. https://doi.org/10.1016/j.tsf.2006.03.001

    Article  CAS  Google Scholar 

  78. G. E. Walrafen, S. R. Samanta, and P. N. Krishnan. J. Chem. Phys., 1980, 72, 113-120. https://doi.org/10.1063/1.438894

    Article  CAS  Google Scholar 

  79. J. L. Parsons and M. E. Milberg. J. Am. Ceram. Soc., 1959, 43(6), 326-330. https://doi.org/10.1111/j.1151-2916.1960.tb13661.x

    Article  CAS  Google Scholar 

  80. A. S. Tenney and J. Wong. J. Chem. Phys., 1972, 56, 5516-5523. https://doi.org/10.1063/1.1677069

    Article  CAS  Google Scholar 

  81. H. Werheit, M. H. Manghnani, U. Kuhlmann, A. Hushur, and S. Shalamberidze. Solid State Sci., 2017, 72, 80-93. https://doi.org/10.1016/j.solidstatesciences.2017.08.013

    Article  CAS  Google Scholar 

  82. J. H. Park and D. J. Min. ISIJ Int., 2000, 40(Suppl.), S96-S100. https://doi.org/10.2355/isijinternational.40.Suppl_S96

    Article  CAS  Google Scholar 

  83. K. Kojima, M. Tachibana, P. Molina-Morales, and H. Nakai. J. Appl. Phys., 2005, 97, 104320. https://doi.org/10.1063/1.1900297

    Article  CAS  Google Scholar 

  84. Z. H. Ni, H. M. Fan, Y. P. Feng, Z. X. Shen, B. J. Yang, and Y. H. Wu. J. Chem. Phys., 2006, 124(20), 204703. https://doi.org/10.1063/1.2200353

    Article  CAS  PubMed  Google Scholar 

  85. M. S. Dresselhaus, A. Jorio, M. Hofmann, G. Dresselhaus, and R. Saito. Nano Lett., 2010, 10, 751-758. https://doi.org/10.1021/nl904286r

    Article  CAS  PubMed  Google Scholar 

  86. A. Eckmann, A. Felten, A. Mishchenko, L. Britnell, R. Krupke, K. S. Novoselov, and C. Casiraghi. Nano Lett., 2012, 12, 3925-3930. https://doi.org/10.1021/nl300901a

    Article  CAS  PubMed  Google Scholar 

  87. A. Jorio, M. S. Dresselhaus, R. Saito, and G. Dresselhaus. Raman Spectroscopy in Graphene Related Systems. Weinheim, Germany: Wiley-VCH, 2011. https://doi.org/10.1002/9783527632695

    Book  Google Scholar 

  88. S. Kurita, A. Yoshimura, H. Kawamoto, T. Uchida, K. Kojima, M. Tachibana, P. Molina-Morales, and H. Nakai. J. Appl. Phys., 2005, 97, 104320. https://doi.org/10.1063/1.1900297

    Article  CAS  Google Scholar 

  89. Handbook of X-Ray Photoelectron Spectroscopy / Eds. J. F. Moulder, W. F. Stickle, P. E. Sobol, and K. D. Bomben. Eden Prairie, Minnesota: Perkin-Elmer Corporation, Physical Electronics Division, 1992.

Download references

Funding

This work was funded by the Ministry of Science and Higher Education of the Russian Federation, project 121031700314-5.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. L. Kosinova.

Ethics declarations

The authors declare that they have no conflicts of interests.

Additional information

Russian Text © The Author(s), 2022, published in Zhurnal Strukturnoi Khimii, 2022, Vol. 63, No. 7, 98815.https://doi.org/10.26902/JSC_id98815

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maksimovskii, E.A., Maslova, O.V., Semenova, O.I. et al. SYNTHESIS FEATURES AND STRUCTURAL CHARACTERIZATION OF CARBON NANOWALLS PREPARED FROM ORGANOBORON COMPOUNDS. J Struct Chem 63, 1180–1197 (2022). https://doi.org/10.1134/S0022476622070125

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476622070125

Keywords

Navigation