Skip to main content
Log in

STRUCTURAL AND CHEMICAL FEATURES OF CHALCOGENIDES OF EARLY TRANSITION METALS

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

This review is aimed at the generalization of structures, electronic and functional properties of early transition metal (Groups 4-7) chalcogenides (ETMCs) (M = Ti, Zr, Hf, V, Nb, Ta, Mo, W, Re). The structures of various chalcogenides, the preparation of nanomaterials based on them, the effect of the electronic properties of metals and chalcogens on the structural and functional features of metal chalcogenides are considered. The nature of polymerization in ETMCs and redox properties of chalcogens are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

REFERENCES

  1. M. Sajjad, F. Cheng, and W. Lu. RSC Adv., 2021, 11(41), 25450. https://doi.org/10.1039/D1RA02445K

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. T. Wang, S. Chen, H. Pang, H. Xue, and Y. Yu. Adv. Sci., 2017, 4(2), 1600289. https://doi.org/10.1002/advs.201600289

    Article  CAS  Google Scholar 

  3. A. I. Romanenko, G. E. Chebanova, T. Chen, W. Su, and H. Wang. J. Phys. D: Appl. Phys., 2021, 55(14), 143001. https://doi.org/10.1088/1361-6463/ac3ce6

    Article  CAS  Google Scholar 

  4. W. Yang, X. Zhang, and S. D. Tilley. Chem. Mater., 2021, 33(10), 3467. https://doi.org/10.1021/acs.chemmater.1c00741

    Article  CAS  Google Scholar 

  5. K. Ludwiczak, E. Lacinska, J. Binder, I. Lutsyk, M. Rogala, P. Dabrowski, Z. Klusek, R. Stepniewski, and A. Wysmolek. Solid State Commun., 2020, 305, 113749. https://doi.org/10.1016/j.ssc.2019.113749

    Article  CAS  Google Scholar 

  6. J. Molenda, T. Bak, and J. Marzec. Phys. Status Solidi A, 1996, 156, 159. https://doi.org/10.1002/pssa.2211560119

    Article  CAS  Google Scholar 

  7. S. H. Noh, J. Hwang, J. Kang, M. H. Seo, D. Choi, and B. Han. J. Mater. Chem. A, 2018, 6(41), 20005. https://doi.org/10.1039/C8TA07141A

    Article  CAS  Google Scholar 

  8. X. Chia and M. Pumera. Chem. Soc. Rev., 2018, 47(15), 5602. https://doi.org/10.1039/C7CS00846E

    Article  CAS  PubMed  Google Scholar 

  9. S.-L. Li, K. Tsukagoshi, E. Orgiu, and P. Samorì. Chem. Soc. Rev., 2016, 45(1), 118. https://doi.org/10.1039/C5CS00517E

    Article  CAS  PubMed  Google Scholar 

  10. T. Sambongi, K. Tsutsumi, Y. Shiozaki, M. Yamamoto, K. Yamaya, and Y. Abe. Solid State Commun., 1977, 22(12), 729. https://doi.org/10.1016/0038-1098(77)90055-2

    Article  CAS  Google Scholar 

  11. S. G. Zybtsev, V. Y. Pokrovskii, V. F. Nasretdinova, and S. V. Zaitsev-Zotov. Phys. B, 2012, 407(11), 1696. https://doi.org/10.1016/j.physb.2012.01.009

    Article  CAS  Google Scholar 

  12. J. Strachan, A. F. Masters, and T. Maschmeyer. Mater. Res. Bull., 2021, 139, 111286. https://doi.org/10.1016/j.materresbull.2021.111286

    Article  CAS  Google Scholar 

  13. A. P. Tiwari, T. G. Novak, X. Bu, J. C. Ho, and S. Jeon. Catalysts, 2018, 8(11), 551. https://doi.org/10.3390/catal8110551

    Article  CAS  Google Scholar 

  14. E. Flores, J. R. Ares, I. J. Ferrer, and C. Sánchez. Phys. Status Solidi RRL, 2016, 10(11), 802. https://doi.org/10.1002/pssr.201600169

    Article  CAS  Google Scholar 

  15. Ø. Fischer. Appl. Phys., 1978, 16(1), 1. https://doi.org/10.1007/BF00931416

    Article  CAS  Google Scholar 

  16. O. Peña. Phys. C, 2015, 514, 95. https://doi.org/10.1016/j.physc.2015.02.019

    Article  CAS  Google Scholar 

  17. V. E. Fedorov. Khalkogenidy perekhodnykh tugoplavkikh metallov. Kvaziodnomernye soedineniya (Chalcogenides of transitional refractory metals. Quasi-one-dimensional compounds). Novosibirsk, Russia: Nauka, Sib. Otd., 1988. [in Russian]

  18. M. S. Whittingham. Prog. Solid. State Chem., 1978, 12(1), 41. https://doi.org/10.1016/0079-6786(78)90003-1

    Article  CAS  Google Scholar 

  19. H. Tributsch. In: Solar Energy Materials / Eds. M. Grätzel, C. K. Jørgensen, K. Kalyanasundaram, J. Kiwi, R. Reisfeld, and H. Tributsch. Berlin, Heidelberg: Springer, 1982, 127-175.

  20. J. Xie and Y.-C. Lu. Nat. Commun., 2020, 11(1), 2499. https://doi.org/10.1038/s41467-020-16259-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. A. Madhukar. Solid State Commun., 1975, 16(4), 383. https://doi.org/10.1016/0038-1098(75)90092-7

    Article  CAS  Google Scholar 

  22. H. J. Lamfers, A. Meetsma, G. A. Wiegers, and J. L. de Boer. J. Alloys Compd., 1996, 241(1), 34. https://doi.org/10.1016/0925-8388(96)02313-4

    Article  CAS  Google Scholar 

  23. K. Selte and A. Kjekshus. Acta Chem. Scand., 1964, 18(3), 697. https://doi.org/10.3891/acta.chem.scand.18-0697

    Article  CAS  Google Scholar 

  24. M. N. Ivanova, A. N. Enyashin, E. D. Grayfer, and V. E. Fedorov. Phys. Chem. Chem. Phys., 2019, 21(3), 1454. https://doi.org/10.1039/C8CP07150K

    Article  CAS  PubMed  Google Scholar 

  25. F. Kadijk, R. Huisman, and F. Jellinek. Acta Crystallogr., Sect. B, 1968, 24(8), 1102. https://doi.org/10.1107/S0567740868003754

    Article  CAS  Google Scholar 

  26. A. F. J. Ruysink, F. Kadijk, A. J. Wagner, and F. Jellinek. Acta Crystallogr., Sect. B, 1968, 24(12), 1614. https://doi.org/10.1107/S0567740868004723

    Article  CAS  Google Scholar 

  27. K. Selte and A. Kjekshus. Acta Crystallogr., 1964, 17(12), 1568. https://doi.org/10.1107/S0365110X64003875

    Article  CAS  Google Scholar 

  28. J. G. Smeggil. J. Solid State Chem., 1971, 3(2), 248. https://doi.org/10.1016/0022-4596(71)90036-3

    Article  CAS  Google Scholar 

  29. R. Chevrel, M. Sergent, and J. Prigent. J. Solid State Chem., 1971, 3(4), 515. https://doi.org/10.1016/0022-4596(71)90095-8

    Article  CAS  Google Scholar 

  30. S. Furuseth, L. BrattÅs, A. Kjekshus, A. F. Andresen, and P. Fischer. Acta Chem. Scand., 1975, 29a, 623. https://doi.org/10.3891/acta.chem.scand.29a-0623

    Article  Google Scholar 

  31. J. Rijnsdorp and F. Jellinek. J. Solid State Chem., 1978, 25(4), 325. https://doi.org/10.1016/0022-4596(78)90118-4

    Article  CAS  Google Scholar 

  32. J. L. Hodeau, M. Marezio, C. Roucau, R. Ayroles, A. Meerschaut, J. Rouxel, and P. Monceau. J. Phys. C. Solid State, 1978, 11(20), 4117. https://doi.org/10.1088/0022-3719/11/20/009

    Article  CAS  Google Scholar 

  33. A. Meerschaut, L. Guemas, and J. Rouxel. J. Solid State Chem., 1981, 36(1), 118. https://doi.org/10.1016/0022-4596(81)90199-7

    Article  CAS  Google Scholar 

  34. E. Bjerkelund and A. Kjekshus. Acta Chem. Scand., 1965, 19, 701. https://doi.org/10.3891/acta.chem.scand.19-0701

    Article  CAS  Google Scholar 

  35. M. N. Kozlova, Y. V. Mironov, E. D. Grayfer, A. I. Smolentsev, V. I. Zaikovskii, N. A. Nebogatikova, T. Y. Podlipskaya, and V. E. Fedorov. Chem. Eur. J., 2015, 21(12), 4639. https://doi.org/10.1002/chem.201406428

    Article  CAS  PubMed  Google Scholar 

  36. A. Poltarak, P. Poltarak, A. Enyashin, V. Komarov, S. Artemkina, and V. Fedorov. Inorg. Chem., 2022, 61(6), 2783. https://doi.org/10.1021/acs.inorgchem.1c03079

    Article  CAS  PubMed  Google Scholar 

  37. K. Selte and A. Kjekshus. Acta Chem. Scand., 1964, 18, 690. https://doi.org/10.3891/acta.chem.scand.18-0690

    Article  CAS  Google Scholar 

  38. E. Bjerkelund and A. Kjekshus. J. Less Common Met., 1964, 7(3), 231. https://doi.org/10.1016/0022-5088(64)90071-2

    Article  CAS  Google Scholar 

  39. S. Furuseth and B. Klewe. Acta Chem. Scand., 1984, 38a, 467. http://doi.org/10.3891/acta.chem.scand.38a-0467

    Article  Google Scholar 

  40. A. Meerschaut, L. Guémas, R. Berger, and J. Rouxel. Acta Crystallogr., Sect. B, 1979, 35, 1747. https://doi.org/10.1107/S0567740879007688

    Article  Google Scholar 

  41. M. A. Korzhinsky, S. I. Tkachenko, K. I. Shmulovich, Y. A. Taran, and G. S. Steinberg. Nature, 1994, 369(6475), 51. https://doi.org/10.1038/369051a0

    Article  CAS  Google Scholar 

  42. A. K. Geim and K. S. Novoselov. Nat. Mater., 2007, 6(3), 183. https://doi.org/10.1038/nmat1849

    Article  CAS  Google Scholar 

  43. C. N. R. Rao and A. Nag. Eur. J. Inorg. Chem., 2010, 2010(27), 4244. https://doi.org/10.1002/ejic.201000408

    Article  CAS  Google Scholar 

  44. H. S. S. Ramakrishna Matte, A. Gomathi, A. K. Manna, D. J. Late, R. Datta, S. K. Pati, and C. N. R. Rao. Angew. Chem., Int. Ed., 2010, 49(24), 4059. https://doi.org/10.1002/anie.201000009

    Article  CAS  Google Scholar 

  45. L. Ao, A. Pham, H. Y. Xiao, X. T. Zu, and S. Li. Phys. Chem. Chem. Phys., 2016, 18(10), 7163. https://doi.org/10.1039/C5CP07548C

    Article  CAS  PubMed  Google Scholar 

  46. A. A. Tedstone, D. J. Lewis, and P. OBrien. Chem. Mater., 2016, 28(7), 1965. https://doi.org/10.1021/acs.chemmater.6b00430

    Article  CAS  Google Scholar 

  47. C. Xia and J. Li. J. Semicond., 2016, 37(5), 051001. https://doi.org/10.1088/1674-4926/37/5/051001

    Article  CAS  Google Scholar 

  48. W. Choi, N. Choudhary, G. H. Han, J. Park, D. Akinwande, and Y. H. Lee. Mater. Today, 2017, 20(3), 116. https://doi.org/10.1016/j.mattod.2016.10.002

    Article  CAS  Google Scholar 

  49. S. Manzeli, D. Ovchinnikov, D. Pasquier, O. V. Yazyev, and A. Kis. Nat. Rev. Mater., 2017, 2(8), 17033. https://doi.org/10.1038/natrevmats.2017.33

    Article  CAS  Google Scholar 

  50. C. Yan, C. Gong, P. Wangyang, J. Chu, K. Hu, C. Li, X. Wang, X. Du, T. Zhai, Y. Li, and J. Xiong. Adv. Funct. Mater., 2018, 28(39), 1803305. https://doi.org/10.1002/adfm.201803305

    Article  CAS  Google Scholar 

  51. Z. Zhang, P. Yang, M. Hong, S. Jiang, G. Zhao, J. Shi, Q. Xie, and Y. Zhang. Nanotechnology, 2019, 30(18), 182002. https://doi.org/10.1088/1361-6528/aaff19

    Article  CAS  PubMed  Google Scholar 

  52. H. Tang, L. N. Sacco, S. Vollebregt, H. Ye, X. Fan, and G. Zhang. J. Mater. Chem. A, 2020, 8(47), 24943. http://dx.doi.org/10.1039/D0TA08190F

    Article  CAS  Google Scholar 

  53. W. Zhang, P. K. J. Wong, R. Chua, A. T. S. Wee. In: Spintronic 2D Materials / Eds. W. Liu and Y. Xu. Elsevier, 2020, 227-251, https://doi.org/10.1016/B978-0-08-102154-5.00007-2

    Chapter  Google Scholar 

  54. E. D. Grayfer, M. N. Kozlova, and V. E. Fedorov. Adv. Colloid Interface Sci., 2017, 245, 40. https://doi.org/10.1016/j.cis.2017.04.014

    Article  CAS  PubMed  Google Scholar 

  55. G. Zhang and Y.-W. Zhang. J. Mater. Chem. C, 2017, 5(31), 7684. https://doi.org/10.1039/C7TC01088E

    Article  CAS  Google Scholar 

  56. P. Vaqueiro, M. L. Kosidowski, and A. V. Powell. Chem. Mater., 2002, 14(3), 1201. https://doi.org/10.1021/cm010720k

    Article  CAS  Google Scholar 

  57. S. A. Dalmatova, A. D. Fedorenko, L. N. Mazalov, I. P. Asanov, A. Y. Ledneva, M. S. Tarasenko, A. N. Enyashin, V. I. Zaikovskii, and V. E. Fedorov. Nanoscale, 2018, 10(21), 10232. https://doi.org/10.1039/C8NR01661E

    Article  CAS  PubMed  Google Scholar 

  58. O. Mitsuko and S. Masanobu. Chem. Lett., 1980, 9(6), 665. https://doi.org/10.1246/cl.1980.665

    Article  Google Scholar 

  59. Y. Sharma and P. Srivastava. AIP Conf. Proc., 2011, 1347(1), 123. https://doi.org/10.1063/1.3601801

    Article  Google Scholar 

  60. M. N. Sokolov, N. G. Naumov, P. P. Samoylov, and V. P. Fedin. In: Comprehensive Inorganic Chemistry II / Eds. J. Reedijk and K. Poeppelmeier. Amsterdam: Elsevier, 2013, 271-310. https://doi.org/10.1016/B978-0-08-097774-4.00212-6

    Chapter  Google Scholar 

  61. S. K. Srivastava and B. N. Avasthi. J. Mater. Sci., 1992, 27(14), 3693. https://doi.org/10.1007/BF00545445

    Article  CAS  Google Scholar 

  62. A. Patra and C. S. Rout. RSC Adv., 2020, 10(60), 36413. https://doi.org/10.1039/D0RA07160A

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. P. M. Keane and J. A. Ibers. Inorg. Chem., 1991, 30(6), 1327. https://doi.org/10.1021/ic00006a031

    Article  CAS  Google Scholar 

  64. F. Q. Huang and J. A. Ibers. Inorg. Chem., 2001, 40(10), 2346. https://doi.org/10.1021/ic0011260

    Article  CAS  PubMed  Google Scholar 

  65. C. Rumpf, C. Näther, and W. Bensch. Z. Anorg. Allg. Chem., 2001, 627(3), 378. https://doi.org/10.1002/1521-3749(200103)627:3<378::AID-ZAAC378>3.0.CO;2-J

    Article  CAS  Google Scholar 

  66. W. Krönert and K. Plieth. Z. Anorg. Allg. Chem., 1965, 336(3/4), 207. https://doi.org/10.1002/zaac.19653360311

    Article  Google Scholar 

  67. R. Allmann, I. Baumann, A. Kutoglu, H. Rösch, and E. Hellner. Sci. Nat., 1964, 51(11), 263. https://doi.org/10.1007/BF00638454

    Article  CAS  Google Scholar 

  68. H. Böhm and H.-G. v. Schnering. Z. Kristallogr. – Cryst. Mater., 1985, 171(1-4), 41. https://doi.org/10.1524/zkri.1985.171.14.41

    Article  Google Scholar 

  69. P. Gressier, L. Guémas, and A. Meerschaut. Mater. Res. Bull., 1985, 20(5), 539. https://doi.org/10.1016/0025-5408(85)90109-6

    Article  CAS  Google Scholar 

  70. A. Meerschaut, P. Gressier, L. Guémas, and J. Rouxel. J. Solid State Chem., 1984, 51, 307. https://doi.org/10.1016/0022-4596(84)90347-5

    Article  CAS  Google Scholar 

  71. P. Grenouilleau, A. Meerschaut, L. Guemas, and J. Rouxel. J. Solid State Chem., 1987, 66(2), 293. https://doi.org/10.1016/0022-4596(87)90198-8

    Article  CAS  Google Scholar 

  72. P. Gressier, L. Guemas, and A. Meerschaut. Acta Crystallogr., Sect. B, 1982, 38(11), 2877. https://doi.org/10.1107/S0567740882010176

    Article  Google Scholar 

  73. M. Sokolov, H. Imoto, T. Saito, and V. Fedorov. Polyhedron, 1998, 17(21), 3735. https://doi.org/10.1016/S0277-5387(98)00172-7

    Article  CAS  Google Scholar 

  74. W. Tremel. Chem. Ber., 1992, 125(10), 2165. https://doi.org/10.1002/cber.19921251002

    Article  CAS  Google Scholar 

  75. S.-X. Liu, D.-P. Huang, C.-C. Huang, and J.-L. Huang. Polyhedron, 1996, 15(13), 2295. https://doi.org/10.1016/0277-5387(95)00592-7

    Article  CAS  Google Scholar 

  76. J.-L. Huang, D.-P. Huang, S.-X. Liu, C.-C. Huang, and H.-D. Xu. Acta Crystallogr., Sect. C: Cryst. Struct., 1998, 54(7), 895. https://doi.org/10.1107/S010827019701860X

    Article  Google Scholar 

  77. A. Zettl, C. M. Jackson, A. Janossy, G. Grüner, A. Jacobsen, and A. H. Thompson. Solid State Commun., 1982, 43(5), 345. https://doi.org/10.1016/0038-1098(82)90491-4

    Article  CAS  Google Scholar 

  78. A. Meerschaut and J. Rouxel. J. Less Common Met., 1975, 39(2), 197. https://doi.org/10.1016/0022-5088(75)90194-0

    Article  CAS  Google Scholar 

  79. B. Guster, M. Pruneda, P. Ordejón, E. Canadell, J.-P. Pouget. and J. Condens. Matter Phys., 2021, 33(48), 485401. https://doi.org/10.1088/1361-648X/ac238a

    Article  CAS  Google Scholar 

  80. J. Yang, Y. Q. Wang, R. R. Zhang, L. Ma, W. Liu, Z. Qu, L. Zhang, S. L. Zhang, W. Tong, L. Pi, W. K. Zhu, and C. J. Zhang. Appl. Phys. Lett., 2019, 115(3), 033102. https://doi.org/10.1063/1.5099110

    Article  CAS  Google Scholar 

  81. Y. Zhang, L.-F. Lin, A. Moreo, S. Dong, and E. Dagotto. Phys. Rev. B, 2020, 101(17), 174106. https://doi.org/10.1103/PhysRevB.101.174106

    Article  CAS  Google Scholar 

  82. F. W. Boswell, A. Prodan, and J. K. Brandon. J. Phys. C: Solid State Phys., 1983, 16(6), 1067. https://doi.org/10.1088/0022-3719/16/6/012

    Article  CAS  Google Scholar 

  83. M. N. Kozlova, E. D. Grayfer, P. A. Poltarak, S. B. Artemkina, A. G. Cherkov, L. S. Kibis, A. I. Boronin, and V. E. Fedorov. Adv. Mater. Interfaces, 2017, 4(23), 1700999. https://doi.org/10.1002/admi.201700999

    Article  CAS  Google Scholar 

  84. M. N. Kozlova, A. N. Enyashin, E. D. Grayfer, V. A. Kuznetsov, P. E. Plyusnin, N. A. Nebogatikova, V. I. Zaikovskii, and V. E. Fedorov. J. Mater. Chem. C, 2017, 5(26), 6601. https://doi.org/10.1039/C7TC01320E

    Article  CAS  Google Scholar 

  85. J. N. Coleman, M. Lotya, A. ONeill, S. D. Bergin, P. J. King, U. Khan, K. Young, A. Gaucher, S. De, R. J. Smith, I. V. Shvets, S. K. Arora, G. Stanton, H.-Y. Kim, K. Lee, G. T. Kim, G. S. Duesberg, T. Hallam, J. J. Boland, J. J. Wang, J. F. Donegan, J. C. Grunlan, G. Moriarty, A. Shmeliov, R. J. Nicholls, J. M. Perkins, E. M. Grieveson, K. Theuwissen, D. W. McComb, P. D. Nellist, and V. Nicolosi. Science, 2011, 331(6017), 568. https://doi.org/10.1126/science.1194975

    Article  CAS  PubMed  Google Scholar 

  86. V. Nicolosi, M. Chhowalla, M. G. Kanatzidis, M. S. Strano, and J. N. Coleman. Science, 2013, 340(6139), 1226419. https://doi.org/10.1126/science.1226419

    Article  Google Scholar 

  87. V. E. Fedorov, S. B. Artemkina, E. D. Grayfer, N. G. Naumov, Y. V. Mironov, A. I. Bulavchenko, V. I. Zaikovskii, I. V. Antonova, A. I. Komonov, and M. V. Medvedev. J. Mater. Chem. C, 2014, 2(28), 5479. https://doi.org/10.1039/C4TC00459K

    Article  CAS  Google Scholar 

  88. K.-G. Zhou, N.-N. Mao, H.-X. Wang, Y. Peng, and H.-L. Zhang. Angew. Chem., Int. Ed., 2011, 50(46), 10839. https://doi.org/10.1002/anie.201105364

    Article  CAS  Google Scholar 

  89. J. Feng, L. Peng, C. Wu, X. Sun, S. Hu, C. Lin, J. Dai, J. Yang, and Y. Xie. Adv. Mater., 2012, 24(15), 1969. https://doi.org/10.1002/adma.201104681

    Article  CAS  PubMed  Google Scholar 

  90. M. N. Kozlova, P. A. Poltarak, S. B. Artemkina, M. R. Das, P. Sengupta, and V. E. Fedorov. Mater. Today: Proc., 2017, 4(11), 11411. https://doi.org/10.1016/j.matpr.2017.09.019

    Article  CAS  Google Scholar 

  91. P. Poltarak, A. Poltarak, S. Artemkina, T. Podlipskaya, I. Asanov, and V. Fedorov. Colloids Surf. A: Physicochem. Eng., 2019, 579, 123667. https://doi.org/10.1016/j.colsurfa.2019.123667

    Article  CAS  Google Scholar 

  92. S. Chae, A. J. Siddiqa, B. J. Kim, S. Oh, K. H. Choi, K. H. Lee, H. Y. Kim, H. K. Yu, and J.-Y. Choi. RSC Adv., 2018, 8(62), 35348. https://doi.org/10.1039/C8RA06975A

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. B. J. Kim, B. J. Jeong, S. Oh, S. Chae, K. H. Choi, T. Nasir, S. H. Lee, K.-W. Kim, H. K. Lim, I. J. Choi, J.-Y. Moon, H. K. Yu, J.-H. Lee, and J.-Y. Choi. Nanomaterials, 2018, 8(9), 737. https://doi.org/10.3390/nano8090737

    Article  CAS  PubMed Central  Google Scholar 

  94. S. Oh, S. Chae, B. J. Kim, A. J. Siddiqa, K. H. Choi, W.-S. Jang, K. H. Lee, H. Y. Kim, D. K. Lee, Y.-M. Kim, H. K. Yu, and J.-Y. Choi. Phys. Status Solidi RRL, 2018, 12(12), 1800451. https://doi.org/10.1002/pssr.201800451

    Article  CAS  Google Scholar 

  95. W.-G. Lee, Y. K. Chung, J. Lee, B. J. Kim, S. Chae, B. J. Jeong, J.-Y. Choi, and J. Huh. ACS Omega, 2020, 5(19), 10800. https://doi.org/10.1021/acsomega.0c00388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. W.-G. Lee, S. Chae, Y. K. Chung, W.-S. Yoon, J.-Y. Choi, and J. Huh. ACS Omega, 2019, 4(19), 18392. https://doi.org/10.1021/acsomega.9b02655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. W. Shi, R. W. Hughes, S. J. Denholme, and D. H. Gregory. CrystEngComm, 2010, 12(3), 641. https://doi.org/10.1039/B918794B

    Article  CAS  Google Scholar 

  98. M. Talib, R. Tabassum, S. S. Islam, and P. Mishra. RSC Adv., 2019, 9(2), 645. https://doi.org/10.1039/C8RA08181F

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. X. Wu, Y. Tao, Q. Gao, and Y. Zhang. J. Mater. Chem., 2009, 19(23), 3883. https://doi.org/10.1039/B820654F

    Article  CAS  Google Scholar 

  100. T. A. Empante, A. Martinez, M. Wurch, Y. Zhu, A. K. Geremew, K. Yamaguchi, M. Isarraraz, S. Rumyantsev, E. J. Reed, A. A. Balandin, and L. Bartels. Nano Lett., 2019, 19(7), 4355. https://doi.org/10.1021/acs.nanolett.9b00958

    Article  CAS  PubMed  Google Scholar 

  101. J. Jin, M. Wurch, S. Baraghani, D. J. Coyle, T. A. Empante, F. Kargar, A. A. Balandin, and L. Bartels. Cryst. Growth Des., 2021, 21(11), 6537. https://doi.org/10.1021/acs.cgd.1c00969

    Article  CAS  Google Scholar 

  102. X. Wu, B. Wu, H. Wang, Q. Zhuang, Z. Xiong, H. Yi, P. Xu, G. Shi, Y. Guo, and B. Wang. Energy Fuels, 2021, 35(14), 11563. https://doi.org/10.1021/acs.energyfuels.1c01258

    Article  CAS  Google Scholar 

  103. S. P. Gabuda, S. G. Kozlova, M. R. Ryzhikov, and V. E. Fedorov. J. Phys. Chem. C, 2012, 116(38), 20651. https://doi.org/10.1021/jp3080767

    Article  CAS  Google Scholar 

  104. V. E. Fedorov, I. V. Mirzaeva, S. G. Kozlova, E. D. Grayfer, and M. V. Medvedev. In: 35th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), Opatija, Croatia, May 21-25, 2012. IEEE, 2012, 25–26.

  105. W. Hönle and K. Yvon. J. Solid State Chem., 1987, 70(2), 235. https://doi.org/10.1016/0022-4596(87)90062-4

    Article  Google Scholar 

  106. X.-Y. Shi, L. Wang, L.-D. Chen, X.-H. Chen, and T. Nonferr. Metal. Soc., 2009, 19(3), 642. https://doi.org/10.1016/S1003-6326(08)60326-X

    Article  CAS  Google Scholar 

  107. V. E. Fedorov, N. V. Podberezskaya, A. V. Mischenko, G. F. Khudorozko, and I. P. Asanov. Mater. Res. Bull., 1986, 21(11), 1335. https://doi.org/10.1016/0025-5408(86)90068-1

    Article  CAS  Google Scholar 

  108. H.-J. Kim, S.-H. Kang, I. Hamada, and Y.-W. Son. Phys. Rev. B, 2017, 95(18), 180101. https://doi.org/10.1103/PhysRevB.95.180101

    Article  CAS  Google Scholar 

  109. E. Levi, G. Gershinsky, D. Aurbach, and O. Isnard. Inorg. Chem., 2009, 48(18), 8751. https://doi.org/10.1021/ic900805g

    Article  CAS  PubMed  Google Scholar 

  110. V. E. Fedorov, Y. V. Mironov, V. P. Fedin, and Y. I. Mironov. J. Struct. Chem., 1994, 35(1), 146. https://doi.org/10.1007/BF02578517

    Article  Google Scholar 

  111. S. Jobic, P. Deniard, R. Brec, J. Rouxel, A. Jouanneaux, and A. N. Fitch. Z. Anorg. Allg. Chem., 1991, 598(1), 199. https://doi.org/10.1002/zaac.19915980119

    Article  Google Scholar 

  112. V. I. Larchev and S. V. Popova. Izv. Akad. Nauk SSSR, Neorg. Mater., 1976, 12(8), 1365. [In Russian]

  113. W. Hönle and H. G. v. Schnering. Z. Kristallogr. – Cryst. Mater., 1990, 191(1-4), 139. https://doi.org/10.1524/zkri.1990.191.14.139

    Article  Google Scholar 

  114. D. R. Lide. In: Handbook of Chemistry and Physics / Ed. D. R. Lide. CRC Press, 2003-2004, 10.178-10.180.

  115. A. A. Opalovskii and V. E. Fedorov. Russ. Chem. Rev., 1966, 35(3), 186. https://doi.org/10.1070/RC1966v035n03ABEH001439

    Article  Google Scholar 

  116. S. F. Solodovnikov, Y. V. Mironov, S. S. Yarovoi, A. V. Virovets, and V. E. Fedorov. Chem. Sustainable Dev., 2000, 8, 115.

  117. N. G. Naumov, A. V. Virovets, and V. E. Fedorov. J. Struct. Chem., 2000, 41(3), 499. https://doi.org/10.1007/BF02742011

    Article  CAS  Google Scholar 

  118. Y. V. Mironov, N. G. Naumov, S. G. Kozlova, S.-J. Kim, and V. E. Fedorov. Angew. Chem., Int. Ed., 2005, 44(42), 6867. https://doi.org/10.1002/anie.200501911

    Article  CAS  Google Scholar 

  119. V. E. Fedorov, Y. V. Mironov, N. G. Naumov, M. N. Sokolov, and V. P. Fedin. Russ. Chem. Rev., 2007, 76(6), 529. https://doi.org/10.1070/RC2007v076n06ABEH003707

    Article  CAS  Google Scholar 

  120. W. Bronger. Angew. Chem., Int. Ed., 1981, 20(1), 52. https://doi.org/10.1002/anie.198100521

    Article  Google Scholar 

  121. T. Saito. J. Chem. Soc., Dalton. Trans., 1999, 2, 97. https://doi.org/10.1039/A806651E

    Article  Google Scholar 

  122. W. Bronger. In: Metal Clusters in Chemistry / Eds. P. Braunstein, L. A. Oro, and P. R. Raithby. Weinheim, Germany: Wiley-VCH, 1999, 1591-1611, https://doi.org/10.1002/9783527618316.ch5f

    Chapter  Google Scholar 

  123. W. Bronger, H.-J. Miessen, R. Neugröschel, D. Schmitz, and M. Spangenberg. Z. Anorg. Allg. Chem., 1985, 525(6), 41. https://doi.org/10.1002/zaac.19855250607

    Article  CAS  Google Scholar 

  124. C. Chang, W. Chen, Y. Chen, Y. Chen, F. Ding, C. Fan, H. J. Fan, Z. Fan, C. Gong, Y. Gong, Q. He, X. Hong, S. Hu, W. Hu, W. Huang, Y. Huang, W. Ji, D. Li, L.-J. Li, Q. Li, L. Li, C. Ling, M. Liu, N. Liu, Z. Liu, K. P. Loh, J. Ma, F. Miao, H. Peng, M. Shao, L. Song, S. Su, S. Sun, C. Tan, Z. Tang, D. Wang, H. Wang, J. Wang, X. Wang, X. Wang, A. T. S. Wee, Z. Wei, Y. Wu, Z.-S. Wu, J. Xiong, Q. Xiong, W. Xu, P. Yin, H. Zeng, Z. Zeng, T. Zhai, H. Zhang, H. Zhang, Q. Zhang, T. Zhang, X. Zhang, L.-D. Zhao, M. Zhao, W. Zhao, Y. Zhao, K.-G. Zhou, X. Zhou, Y. Zhou, H. Zhu, H. Zhang, and Z. Liu. Acta Phys.-Chim. Sin., 2021, 37(12), 2108017. https://doi.org/10.3866/PKU.WHXB202108017

    Article  Google Scholar 

  125. M. Mohl, A.-R. Rautio, G. A. Asres, M. Wasala, P. D. Patil, S. Talapatra, and K. Kordas. Adv. Mater. Interfaces, 2020, 7(13), 2000002. https://doi.org/10.1002/admi.202000002

    Article  CAS  Google Scholar 

  126. H. Yuan, L. Kong, T. Li, and Q. Zhang. Chin. Chem. Lett., 2017, 28(12), 2180. https://doi.org/10.1016/j.cclet.2017.11.038

    Article  CAS  Google Scholar 

  127. V. A. Kuznetsov, A. S. Berdinsky, A. Y. Ledneva, S. B. Artemkina, M. S. Tarasenko, and V. E. Fedorov. Sens. Actuators, A, 2015, 226, 5. https://doi.org/10.1016/j.sna.2015.02.020

    Article  CAS  Google Scholar 

  128. V. E. Fedorov, N. G. Naumov, A. N. Lavrov, M. S. Tarasenko, S. B. Artemkina, A. I. Romanenko, and M. V. Medvedev. In: 36th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), Opatija, Croatia, May 20-24, 2013. IEEE, 2013, 11-14.

  129. E. Guilmeau, A. Maignan, C. Wan, and K. Koumoto. Phys. Chem. Chem. Phys., 2015, 17(38), 24541. https://doi.org/10.1039/C5CP01795E

    Article  CAS  PubMed  Google Scholar 

  130. A. I. Romanenko, G. E. Yakovleva, V. E. Fedorov, S. B. Artemkina, A. Yu. Ledneva, K. R. Zhdanov, B. M. Kuchumov, V. A. Kuznetsov, H. Wang, S. Singh, S. Saini, M.-K. Han, and S.-J. Kim. J. Am. Ceram. Soc., 2020, 103(11), 6289. https://doi.org/10.1111/jace.17342

    Article  CAS  Google Scholar 

  131. D. Joseph, M. Navaneethan, R. Abinaya, S. Harish, J. Archana, S. Ponnusamy, K. Hara, and Y. Hayakawa. Appl. Surf. Sci., 2020, 505, 144066. https://doi.org/10.1016/j.apsusc.2019.144066

    Article  CAS  Google Scholar 

  132. W. T. Hick. J. Electrochem. Soc., 1964, 111(9), 1058. https://doi.org/10.1149/1.2426317

    Article  CAS  Google Scholar 

  133. C. Wan, X. Gu, F. Dang, T. Itoh, Y. Wang, H. Sasaki, M. Kondo, K. Koga, K. Yabuki, G. J. Snyder, R. Yang, and K. Koumoto. Nat. Mater., 2015, 14(6), 622. https://doi.org/10.1038/nmat4251

    Article  CAS  Google Scholar 

  134. C. Wan, R. Tian, A. B. Azizi, Y. Huang, Q. Wei, R. Sasai, S. Wasusate, T. Ishida, and K. Koumoto. Nano Energy, 2016, 30, 840. https://doi.org/10.1016/j.nanoen.2016.09.011

    Article  CAS  Google Scholar 

  135. J. Li, Q. Shi, J. A. Röhr, H. Wu, B. Wu, Y. Guo, Q. Zhang, C. Hou, Y. Li, and H. Wang. Adv. Funct. Mater., 2020, 30(36), 2002508. https://doi.org/10.1002/adfm.202002508

    Article  CAS  Google Scholar 

  136. D. Suh, D. Lee, C. Kang, I.-J. Shon, W. Kim, and S. Baik. J. Mater. Chem., 2012, 22(40), 21376. https://doi.org/10.1039/C2JM34510B

    Article  CAS  Google Scholar 

  137. G. E. Yakovleva, A. I. Romanenko, A. S. Berdinsky, A. Y. Ledneva, V. A. Kuznetsov, M. K. Han, S. J. Kim, and V. E. Fedorov. In: 39th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), Opatija, Croatia, May 30-June 3, 2016. IEEE, 2016, 5-9.

  138. G. E. Yakovleva, A. I. Romanenko, A. S. Berdinsky, V. A. Kuznetsov, A. Y. Ledneva, S. B. Artemkina, and V. E. Fedorov. Semiconductors, 2017, 51(6), 725. https://doi.org/10.1134/S1063782617060288

    Article  CAS  Google Scholar 

  139. G. E. Yakovleva, A. I. Romanenko, A. S. Berdinsky, V. A. Kuznetsov, A. Y. Ledneva, and A. Y. Fedorov. J. Sib. Fed. Univ. – Math. Phys., 2018, 11(4), 459. https://doi.org/10.17516/1997-1397-2018-11-4-459-464

    Article  Google Scholar 

  140. G. E. Yakovleva, A. I. Romanenko, A. Y. Ledneva, V. A. Belyavin, V. A. Kuznetsov, A. S. Berdinsky, A. T. Burkov, P. P. Konstantinov, S. V. Novikov, M.-K. Han, S.-J. Kim, and V. E. Fedorov. J. Am. Ceram. Soc., 2019, 102(10), 6060. https://doi.org/10.1111/jace.16455

    Article  CAS  Google Scholar 

  141. E. D. Grayfer, E. M. Pazhetnov, M. N. Kozlova, S. B. Artemkina, and V. E. Fedorov. ChemSusChem, 2017, 10(24), 4805. https://doi.org/10.1002/cssc.201701709

    Article  CAS  PubMed  Google Scholar 

  142. A. Sakuda, T. Takeuchi, N. Taguchi, H. Sakaebe, H. Kobayashi, K. Tatsumi, and Z. Ogumi. ECS Meet. Abstr., 2014, MA2014-04, 534. https://doi.org/10.1149/ma2014-04/3/534

    Article  Google Scholar 

  143. A. Sakuda, N. Taguchi, T. Takeuchi, H. Kobayashi, H. Sakaebe, K. Tatsumi, and Z. Ogumi. ECS Electrochem. Lett., 2014, 3(7), A79. https://doi.org/10.1149/2.0091407eel

    Article  CAS  Google Scholar 

  144. J. Xie, R. Wang, J. Bao, X. Zhang, H. Zhang, S. Li, and Y. Xie. Inorg. Chem. Front., 2014, 1(10), 751. https://doi.org/10.1039/C4QI00127C

    Article  CAS  Google Scholar 

  145. Y. Wang, E. Wang, X. Zhang, and H. Yu. Energy Fuels, 2021, 35(3), 1918. https://doi.org/10.1021/acs.energyfuels.0c03608

    Article  CAS  Google Scholar 

  146. H. Xu, Z. Jiang, H. Zhang, L. Liu, L. Fang, X. Gu, and Y. Wang. ACS Energy Lett., 2017, 2(5), 1099. https://doi.org/10.1021/acsenergylett.7b00209

    Article  CAS  Google Scholar 

  147. F. O.-T. Agyapong-Fordjour, S. Oh, J. Lee, S. Chae, K. H. Choi, S. H. Choi, S. Boandoh, W. Yang, J. Huh, K. K. Kim, and J.-Y. Choi. ACS Appl. Energy Mater., 2019, 2(8), 5785. https://doi.org/10.1021/acsaem.9b00918

    Article  CAS  Google Scholar 

Download references

Funding

The work was supported by the Ministry of Science and Higher Education of the Russian Federation (CITIS 121031700321-3) and the Russian Science Foundation (project No. 21-13-00274, https://rscf.ru/project/21-13-00274/).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. B. Artemkina.

Ethics declarations

The authors declare that they have no conflicts of interests.

Additional information

Russian Text © The Author(s), 2022, published in Zhurnal Strukturnoi Khimii, 2022, Vol. 63, No. 7, 96292.https://doi.org/10.26902/JSC_id96292

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Artemkina, S.B., Grayfer, E.D., Ivanova, M.N. et al. STRUCTURAL AND CHEMICAL FEATURES OF CHALCOGENIDES OF EARLY TRANSITION METALS. J Struct Chem 63, 1079–1100 (2022). https://doi.org/10.1134/S002247662207006X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002247662207006X

Keywords

Navigation