Skip to main content
Log in

STRUCTURE - THERMAL PROPERTIES RELATIONSHIP IN VOLATILE HETEROMETALLIC COMPLEXES USED IN CVD OF Cu–Pt AND Cu–Pd FILMS

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

The structure and thermal properties of a new heterometallic complex based on copper and noble metal β-diketonates are described: \(\text{Cu}(\text{hfa})_{2}{}^{*}\cdot \text{PtL}_{2}^{\text{F}}\) (hfa = 1,1,1,5,5,5-hexafluoropentane-2,4-dionato, LF = 1,1,1-trifluoro-5-methoxy-5-methyl-hexane-2,4-dionato). According to the single crystal X-ray diffraction data, the synthesized complex represents a 1D coordination polymer completely sublimed at Т = 90 °C and Р = 10–2 Torr, Тmelt = 149 °C. The thermal stability of the complex is analyzed by thermogravimetry and differential scanning calorimetry. The correlation between the thermal stability and the complex and the structural data together with the results of quantum chemical calculations is discussed. The crystal structures, thermal properties, and features of the electronic structure of the Cu–Pt complex and the isoligand Cu–Pd complex \(\text{Cu}(\text{hfa})_{2}{}^{*}\cdot \text{PtL}_{2}^{\text{F}}\) are compared for their further use as precursors in the co-deposition of coatings from binary and ternary alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

REFERENCES

  1. Chemical Vapour Deposition (CVD) Advances, Technology, and Applications, 1st ed. / Ed. K. L. Choy. Boca Raton, USA: CRC Press, 2019. https://doi.org/10.1201/9780429342363

    Book  Google Scholar 

  2. L. Sun, G. Yuan, L. Gao, J. Yang, M. Chhowalla, M. H. Gharahcheshmeh, K. K. Gleason, Y. S. Choi, B. H. Hong, and Z. Liu. Nat. Rev. Methods Primers, 2021, 1, 5. https://doi.org/10.1038/s43586-020-00005-y

    Article  CAS  Google Scholar 

  3. V. V. Krisyuk, Y. V. Shubin, F. Senocq, A. E. Turgambaeva, T. Duguet, I. K. Igumenov, and C. Vahlas. J. Cryst. Growth, 2015, 414, 130-134. https://doi.org/10.1016/j.jcrysgro.2014.09.032

    Article  CAS  Google Scholar 

  4. V. V. Krisyuk, A. E. Turgambaeva, I. V. Mirzaeva, S. Urkasym kyzy, T. P. Koretskaya, S. V. Trubin, S. V. Sysoev, Yu. V. Shubin, E. A. Maksimovskiy, and N. I. Petrova. Vacuum, 2019, 166, 248-254. https://doi.org/10.1016/j.vacuum.2019.05.021

    Article  CAS  Google Scholar 

  5. Z.-P. Wu, D. T. Caracciolo, Y. Maswadeh, J. Wen, Z. Kong, S. Shan, J. A. Vargas, S. Yan, E. Hopkins, K. Park, A. Sharma, Y. Ren, V. Petkov, L. Wang, and C.-J. Zhong. Nat. Commun., 2021, 12, 859. https://doi.org/10.1038/s41467-021-21017-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. V. V. Krisyuk, S. Urkasym kyzy, T. V. Rybalova, I. V. Korolkov, S. V. Sysoev, T. P. Koretskaya, B. M. Kuchumov, and A. E. Turgambaeva. Polyhedron, 2020, 191, 114806. https://doi.org/10.1016/j.poly.2020.114806

    Article  CAS  Google Scholar 

  7. V. V. Krisyuk, N. A. Kryuchkova, A. I. Stadnichenko, and M. M. Syrokvashin. Appl. Surf. Sci., 2021, 547, 149068. https://doi.org/10.1016/j.apsusc.2021.149068

    Article  CAS  Google Scholar 

  8. V. V. Krisyuk, S. Urkasym kyzy, I. A. Baidina, G. V. Romanenko, I. V. Korolkov, T. P. Koretskaya, N. I. Petrova, and A. E. Turgambaeva. J. Struct. Chem., 2017, 58, 1522-1529. https://doi.org/10.1134/S0022476617080078

    Article  CAS  Google Scholar 

  9. Bruker APEX2 software suite (APEX2 v.2013.6-2, SADABS v.2012/1, SAINT v.8.32b), Bruker APEX3 software suite (APEX3 v.2019.1-0, SADABS v.2016/2, SAINT v.8.40a). Madison, WI, USA: Bruker Nonius, 2003-2004, Bruker AXS, 2005-2018, Bruker Nano, 2019.

  10. G. M. Sheldrick. Acta Crystallogr., Sect. A, 2015, 71, 3-8. https://doi.org/10.1107/S2053273314026370

    Article  Google Scholar 

  11. G. M. Sheldrick. Acta Crystallogr., Sect. C, 2015, 71, 3-8. https://doi.org/10.1107/S2053229614024218

    Article  Google Scholar 

  12. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, and H. Puschmann. J. Appl. Crystallogr., 2009, 42, 339-341. https://doi.org/10.1107/S0021889808042726

    Article  CAS  Google Scholar 

  13. A. D. Becke. J. Chem. Phys., 1993, 98, 5648-5652. https://doi.org/10.1063/1.464913

    Article  CAS  Google Scholar 

  14. C. Lee, W. Yang, and R. G. Parr. Phys. Rev. B, 1988, 37, 785-789. https://doi.org/10.1103/PhysRevB.37.785

    Article  CAS  Google Scholar 

  15. S. H. Vosko, L. Wilk, and M. Nusair. Can. J. Phys., 1980, 58, 1200-1211. https://doi.org/10.1139/p80-159

    Article  CAS  Google Scholar 

  16. P. J. Stephens, F. J. Devlin, C. F. Chabalowski, and M. J. Frisch. J. Phys. Chem., 1994, 98, 11623-11627. https://doi.org/10.1021/ j100096a001

    Article  CAS  Google Scholar 

  17. Jaguar, Version 8.2. New York: Schrödinger, 2017.

  18. P. J. Hay and W. R. Wadt. J. Chem. Phys., 1985, 82, 299. https://doi.org/10.1021/j100096a001

    Article  CAS  Google Scholar 

  19. T. Clark, J. Chandrasekhar, G. W. Spitznagel, and P. von R. Schleyer. J. Comput. Chem., 1983, 4, 294. https://doi.org/10.1002/jcc.540040303

    Article  CAS  Google Scholar 

  20. M. J. Frisch, J. A. Pople, and J. S. Binkley. J. Chem. Phys., 1984, 80, 3265. https://doi.org/10.1063/1.447079

    Article  CAS  Google Scholar 

  21. E. D. Glendening, J. K. Badenhoop, A. E. Reed, J. E. Carpenter, J. A. Bohmann, C. M. Morales, C. R. Landis, and F. Weinhold. NBO 6.0. Madison, WI: Theoretical Chemistry Institute, University of Wisconsin, 2013. https://nbo6.chem.wisc.edu

  22. R. F. W. Bader. Atoms in Molecules: A Quantum Theory. Oxford: Clarendon Press, 1990.

  23. E. Matito and M. Solà. Coord. Chem. Rev., 2009, 253, 647-665. https://doi.org/10.1016/j.ccr.2008.10.003

    Article  CAS  Google Scholar 

  24. S. A. Gromilov and I. A. Baidina. J. Struct. Chem., 2004, 45(6), 1031-1081. https://doi.org/10.1007/s10947-005-0096-4

    Article  CAS  Google Scholar 

  25. I. A. Baidina, S. A. Gromilov, and G. I. Zharkova. J. Struct. Chem., 1999, 40(5), 633-639. https://doi.org/10.1007/BF02700727

    Article  CAS  Google Scholar 

  26. N. B. Morozova, G. I. Zharkova, P. P. Semyannikov, S. V. Sysoev, I. K. Igumenov, N. E. Fedotova, and N. V. Gelfond. J. Phys. IV, 2001, 11, Pr3-609. https://doi.org/10.1051/jp4:2001377

    Article  Google Scholar 

  27. V. V. Krisyuk, A. E. Turgambaeva, Y. V. Shubin, and C. Vahlas. Single-Source Heterometallic Precursors to MOCVD Pd–Cu Alloy Films for Energy and Catalysis Applications. In: Nanomaterials via Single-Source Precursors: Synthesis, Processing and Applications, 1st ed. / Eds. A. Apblett, A. Barron, A. Hepp. Elsevier, 2022, Ch. 13, 453-468.

Download references

Funding

The work was supported by RFBR within project No. 20-03-00629.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Krisyuk.

Ethics declarations

The authors declare that they have no conflicts of interests.

Additional information

Russian Text © The Author(s), 2022, published in Zhurnal Strukturnoi Khimii, 2022, Vol. 63, No. 7, 95767.https://doi.org/10.26902/JSC_id95767

Supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krisyuk, V.V., Kryuchkova, N.A., Komarov, V.Y. et al. STRUCTURE - THERMAL PROPERTIES RELATIONSHIP IN VOLATILE HETEROMETALLIC COMPLEXES USED IN CVD OF Cu–Pt AND Cu–Pd FILMS. J Struct Chem 63, 1070–1078 (2022). https://doi.org/10.1134/S0022476622070058

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476622070058

Keywords

Navigation