Skip to main content
Log in

COMPOSITION, STRUCTURE, AND FUNCTIONAL PROPERTIES OF THIN SILICON NITRIDE FILMS GROWN BY ATOMIC LAYER DEPOSITION FOR MICROELECTRONIC APPLICATIONS (REVIEW OF 25 YEARS OF RESEARCH)

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Results of studies of compositions, structures, and main functional properties of thin silicon nitride (SiNx) films obtained by atomic layer deposition (ALD) are considered over the period of 25 years as applied to the problems of microelectronic technologies. Deposition rates of SiNx films of most processes studied in the temperature range of 200-600 °С correspond to 0.1 nm/cycle for two- and three-step processes involving precursors from chlorosilane, silane, aminosilane, silylamine, cyclosilazane groups and other secondary reagents (NH3, N2H4, H2, N2 and their combinations). XPS, RBS, FTIR, AES, AFM, etc. techniques are used to investigate SiNx films. The discussed schemes of growth processes imply the presence of surface NH and NH2 groups. Plasma activation of nitrogen-containing reagents is needed in preparing the surface of the growing SiNx film to begin precursor chemisorption in the subsequent cycle of deposition and allows a decrease in the precursor dose by several orders of magnitude. Plasma activation processes involving chlorosilanes can form unacceptable, thickness conformal films with heterogeneous properties on the side surfaces of complex stepped reliefs of microelectronic devices. The best characteristics in the stoichiometry, composition, and properties of SiNx films are observed at deposition temperatures above 500 °С for both thermal and plasma activation processes. The conclusion is drawn about the necessity of a deep systematic investigation of experimental publications on plasma-enhanced ALD thin films of silicon nitride as well as their composition, structure, and properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

REFERENCES

  1. R. A. Andrievskii. Russ. Chem. Rev., 1995, 64, 291. https://doi.org/10.1070/RC1995v064n04ABEH000151

    Article  Google Scholar 

  2. F. L. Riley. J. Am. Ceram. Soc., 2000, 83, 245. https://doi.org/10.1111/j.1151-2916.2000.tb01182.x

    Article  Google Scholar 

  3. G. Petzow and M. Herrman. Silicon Nitride Ceramics. In: Structure and Bonding / Ed. D.M.P. Mingos. Berlin, Heidelberg: Springer, 2002, Vol. 102, 47-167. https://doi.org/10.1007/3-540-45623-6_2

    Chapter  Google Scholar 

  4. S. Hampshire. Silicon Nitride Ceramics. In: Engineered Ceramics: Current Status and Future Prospects / Eds. T. Ohji, M. Singh. Hoboken, New Jersey, USA: Wiley & Sons, 2016, 79-97. https://doi.org/10.1002/9781119100430.ch5

    Chapter  Google Scholar 

  5. S. Usherenko, V. Ovtchinikov, V. Shmuradko, and N. Kirshina. Litiyo Metall., 2000, Iss. 2, 26. [In Russian]

  6. H. Liu, M. Fang, Z. Huang, J. Huang, Y. Liu, and X. Wu. Mater. Res. Express, 2016, 3, 085020. https://doi.org/10.1088/2053-1591/3/8/085020

    Article  CAS  Google Scholar 

  7. R. B. Heimann. Ceramics, 2021, 4, 208. https://doi.org/10.3390/ceramics4020016

    Article  CAS  Google Scholar 

  8. J. T. Milek. Silicon Nitride for Microelectronic Applications. Part 1. Preparation and Properties: Handbook of Electronic Materials, Vol. 3. New York-Washington-London: IFI/Plenum, 1971. https://doi.org/10.1007/978-1-4684-6162-6

    Book  Google Scholar 

  9. J. T. Milek. Silicon Nitride for Microelectronic Applications. Part 2. Applications and Devices: Handbook of Electronic Materials, Vol. 6. New York-Washington-London: IFI/Plenum, 1972. https://doi.org/10.1007/978-1-4615-9609-7

    Book  Google Scholar 

  10. C. E. Morosanu. Thin Solid Films, 1980, 65, 171. https://doi.org/10.1016/0040-6090(80)90254-0

    Article  CAS  Google Scholar 

  11. Silicon Nitride in Electronics / Ed. A. V. Rzhanov: Materials Science Monograph, Vol. 34. Amsterdam-Oxford-New York-Tokyo: Elsevier, 1988.

  12. Si Silicon: Silicon Nitride in Microelectronics and Solar Cells. / Eds. A. Pebler and F. Schröder. Berlin, Heidelberg: Springer, 1991. https://doi.org/10.1007/978-3-662-09901-8

    Book  Google Scholar 

  13. N. El-Atab and M. M. Hussain. In: Advanced Nanoelectronics. Post-silicon Materials and Devices / Ed. M. M. Hussain. Weinhem, Germany: Wiley-VCH, 2019, 1-31. https://doi.org/10.1002/9783527811861.ch1

    Chapter  Google Scholar 

  14. C. H. Ting. Inorganic Dielectrics. In: Handbook of Multilevel Metallization for Integrated Circuits / Eds. S. R. Wilson, C. J. Tracy, J. L. Freeman. Westwood, New Jersey, USA: Noyes Publications, 1993, 202-273.

  15. A. R. Reinberg. J. Electron. Mater., 1979, 8, 345. https://doi.org/10.1007/BF02655633

    Article  CAS  Google Scholar 

  16. M. Ritala and M. Leskela. In: Handbook of Thin Film Materials. / Ed. H. S. Nalwa. San Diego: Academic Press, 2002, Vol. 1, 103-159. https://doi.org/10.1016/B978-012512908-4/50005-9

    Article  Google Scholar 

  17. S. Gangpopadhaya. In: Multilayer Thin Films - Versatile Applications for Materials Engineering / Ed. S. Basu. London: IntexOpen, 2020, 29-46. https://doi.org/10.5772/intechopen.89412

    Chapter  Google Scholar 

  18. W. R. Knolle and J. W. Osenbach. J. Appl. Phys., 1985, 58, 1248. https://doi.org/10.1063/1.336116

    Article  CAS  Google Scholar 

  19. V. I. Garmash, V. I. Egorkin, V. E. Zamlyakov, A. V. Kovalchuk, and S. Yu. Shapoval. Semiconductors, 2015, 49, 1727. https://doi.org/10.1134/S1063782615130084

    Article  CAS  Google Scholar 

  20. A. E. Kaloyeros, F. A. Jove, J. Goff, and B. Arkles. ECS J. Solid State Sci. Technol., 2017, 6, P691. https://doi.org/10.1149/2.0011710jss

    Article  CAS  Google Scholar 

  21. A. E. Kaloyeros, Y. Pan, J. Goff, and B. Arkles. ECS J. Solid State Sci. Technol., 2020, 9, 063006. https://doi.org/10.1149/2162-8777/aba447

    Article  CAS  Google Scholar 

  22. M. Tanaka, S. Saida, I. Mizushima, F. Inoue, M. Kojima, T. Tanaka, T. Nakanishi, K. Suguro, and Y. Tsunashima. IEEE Trans. Electron. Dev., 2002, 49, 1526. https://doi.org/10.1109/TED.2002.802630

    Article  CAS  Google Scholar 

  23. V. Y. Vasiliev, J. L. Sudijono, and A. Cuthbertson. Solid State Technol., 2001, 44(3), 129.

  24. A. Stoffel, A. Kovacs, W. Kronast, and B. Müller. J. Micromech. Microeng., 1996, 6(1), 1. https://doi.org/10.1088/0960-1317/6/1/001

    Article  CAS  Google Scholar 

  25. B. C. Joshi, G. Eranna, D. P. Runthala, B. B. Dixit, O. P. Wadhawan, and P. D. Vyas. Indian J. Eng. Mater. Sci., 2000, 7(4), 303.

  26. M. Graderi and R. F. Wolffenbuttel. J. Phys.: Conf. Ser., 2016, 757, 012032. https://doi.org/10.1088/1742-6596/757/1/012032

    Article  CAS  Google Scholar 

  27. D. J. Blumental, R. Heidelman, D. Geuzebroek, A. Leinse, and C. Roeloffzen. Proc. IEEE, 2018, 106, 2209. https://doi.org/10.1109/JPROC.2018.2861576

    Article  CAS  Google Scholar 

  28. Y. Shi, L. He, F. Guang, L. Li, Z. Xin, and R. Liu. Micromachines, 2019, 10, 552. https://doi.org/10.3390/mi10080552

    Article  PubMed Central  Google Scholar 

  29. O. Debieu, R. P. Nalini, J. Cardin, X. Portier, J. Perriure, and F. Gourbilleau. Nanoscale Res. Lett., 2013, 8(1), 31. https://doi.org/ 10.1186/1556-276X-8-31

    Article  PubMed  PubMed Central  Google Scholar 

  30. N. I. Fainer. In: Fundamentalnye osnovy protsessov khimicheskogo osazhdeniya plenok i struktur dlya nanoelektroniki (Fundamental Principles of the Processes of Chemical Deposition of Films and Structures for Nanoelectronics) / Ed. T. P. Smirnova. Novosibirsk: Publishing House SB RAS, 2013, 97-126. [In Russian]

  31. V. Yu. Vasilyev. Nano- Mikrosist. Tekh., 2018, 20, 287. https://doi.org/10.17587/nmst.20.287-296

    Article  CAS  Google Scholar 

  32. V. Yu. Vasilyev. Nano- Mikrosist. Tekh., 2018, 20, 542. https://doi.org/10.17587/nmst.20.542-554

    Article  CAS  Google Scholar 

  33. V. Yu. Vasilyev. Nano- Mikrosist. Tekh., 2018, 20, 585. https://doi.org/10.17587/nmst.20.585-595

    Article  CAS  Google Scholar 

  34. V. Yu. Vasilyev. Nano- Mikrosist. Tekh., 2019, 21, 3. https://doi.org/10.17587/nmst.21.3-13

    Article  CAS  Google Scholar 

  35. V. Yu. Vasilyev. CVD Technologies and Basic Properties of SiNH–Contained Thin Films for Applications in Electronic Devices. In: Chemical Vapor Deposition (CVD). Methods and Technologies / Ed. L. Karlsson. New York: Nova Science Publishers, 2021, 1-103.

  36. V. Yu. Vasilyev. Nano- Mikrosist. Tekh., 2019, 21, 131. https://doi.org/10.17587/nmst.21.131-142

    Article  CAS  Google Scholar 

  37. V. Yu. Vasilyev. Nano- Mikrosist. Tekh., 2019, 21, 352. https://doi.org/10.17587/nmst.21.352-367

    Article  CAS  Google Scholar 

  38. V. A. Gritsenko, V. N. Kruchinin, I. P. Prosvirin, and Yu. N. Novikov. Zh. Eksp. Teor. Fiz., 2019, 156, 1003. https://doi.org/10.1134/S0044451019110166 (In Russ.)

    Article  Google Scholar 

  39. V. A. Gritsenko, I. E. Tyschenko, V. P. Popov, and T. V. Perevalov. Dielektriki v nanoelektronike (Dielectrics in Nanoelectronics). Novosibirsk: Publishing House SB RAS, 2010. [In Russian]

  40. S. M. George. Chem. Rev., 2010, 110, 111. https://doi.org/10.1021/cr900056b

    Article  CAS  Google Scholar 

  41. H. C. M. Knoops, E. Langereis, M. C. M. Van de Sanden, and W. M. M. Kessels. J. Electrochem. Soc., 2010, 157, G241. https://doi.org/10.1149/1.3491381

    Article  CAS  Google Scholar 

  42. X. Meng, Y.-C. Byun, H. S. Kim, J. S. Lee, A. T. Lucero, L. Cheng, and J. Kim. Materials, 2016, 1007. https://doi.org/10.3390/ma9121007

    Article  CAS  PubMed Central  Google Scholar 

  43. R. A. Ovanesyan, E. A. Filatova, S. D. Elliott, D. M. Hausmann, D. C. Smith, and S. Agarwal. J. Vac. Sci. Technol., A, 2019, 37, 060904. https://doi.org/10.1116/1.5113631

    Article  CAS  Google Scholar 

  44. Y. J. Ji, K. S. Kim, K. H. Kim, J. Y. Byun, and G. Y. Yeom. Appl. Sci. Converg. Technol., 2019, 28, 142. https://doi.org/10.5757/ASCT.2019.28.5.142

    Article  Google Scholar 

  45. V. Yu. Vasilyev. Nano- Mikrosist. Tekh., 2018, 20, 329. https://doi.org/10.17587/nmst.20.329-339

    Article  CAS  Google Scholar 

  46. V. Yu. Vasilyev. Nano- Mikrosist. Tekh., 2018, 20, 659. https://doi.org/10.17587/nmst.20.659-675

    Article  CAS  Google Scholar 

  47. V. Yu. Vasilyev. Elektron. Tekh., Ser. 3.: Mikroelektron., 2020, 177(1), 31. [In Russian] https://doi.org/10.7868/S2410993220010042

    Article  Google Scholar 

  48. V. Yu. Vasilyev and S. M. Repinsky. Russ. Chem. Rev., 2005, 74, 413. https://doi.org/10.1070/RC2005v074n05ABEH000886

    Article  CAS  Google Scholar 

  49. V. Yu. Vasilyev. Thin Film Chemical Vapor Deposition in Electronics: Equipment, Methodology and Thin Film Growth Experience. New York: Nova Science Publishers Inc., 2014.

  50. D. J. H. Emslie, P. Chadha, and J. S. Price. Coord. Chem. Rev., 2013, 257, 3282. https://doi.org/10.1016/j.ccr.2013.07.010

    Article  CAS  Google Scholar 

  51. M. Putkonen and L. Niinistö. In: Precursor Chemistry of Advanced Materials. Topics in Organometallic Chemistry. / Ed. R. A. Fischer. Berlin, Heidelberg: Springer, 2005, Vol. 9, 125-145. https://doi.org/10.1007/b136145

    Chapter  Google Scholar 

  52. V. Y. Vasiliev. Nanoindustriya, 2019, 12, 194. https://doi.org/10.22184/1993-8578.2019.12.3-4.194.204

    Article  Google Scholar 

  53. V. Cremers, R. L. Puurunen, and J. Dendooven. Appl. Phys. Rev., 2019, 4, 021302. https://doi.org/10.1063/1.5060967

    Article  CAS  Google Scholar 

  54. T. Watanabe, M. Dakabura, T. Matsura, J. Murota. J. Phys. IV France, 1999, 9, Pr8-333. https://doi.org/10.1051/jp4:1999841

    Article  Google Scholar 

  55. C. Mui, Y. Widjaja, J.K. Kang, C.B. Musgrave. Surf. Sci., 2004, 557, 159. https://doi.org/10.1016/j.susc.2004.03.029

    Article  CAS  Google Scholar 

  56. C. A. Murray, S. D. Elliot, D. Hausmann, J. Henri, and A. LaVoie. ACS Appl. Mater. Interfaces, 2014, 6, 10534. https://doi.org/10.1021/am5021167

    Article  CAS  PubMed  Google Scholar 

  57. J. W. Klaus, A. W. Ott, A. C. Dillon, and S. M. George. Surf. Sci., 1998, 418, L14. https://doi.org/10.1016/S0039-6028(98)00705-5

    Article  CAS  Google Scholar 

  58. K. Ooba, Y. Nakashima, A. Nakajima, and S. Yokoyama. Extended Abstracts of the 1998 International Conference on Solid State Devices and Materials, Hiroshima, Japan, Sep 7-10, 1998. Hiroshima, 1998, 22. https://doi.org/10.7567/SSDM.1998.A-2-2

    Article  Google Scholar 

  59. A. Nakajima, T. Yoshimoto, T. Kidera, K. Obata, S. Yokoyama, H. Sunami, and M. Hirose. Appl. Phys. Let., 2000, 77, 2855. https://doi.org/10.1063/1.1320847

    Article  CAS  Google Scholar 

  60. A. Nakajima, T. Yoshimoto, T. Kidera, and S. Yokoyama. Appl. Phys. Let., 2001, 79, 665. https://doi.org/10.1063/1.1388026

    Article  CAS  Google Scholar 

  61. A. Nakajima, Q. D. M. Khosru, T. Yoshimoto, and S. Yokoyama. Appl. Phys. Let., 2002, 80, 1252. https://doi.org/10.1063/1.1447314

    Article  CAS  Google Scholar 

  62. A. Nakajima, Q. D. M. Khosru, T. Yoshimoto, T. Kidera, and S. Yokoyama. J. Vac. Sci. Technol. B, 2002, 20, 1406. https://doi.org/10.1116/1.1491550

    Article  CAS  Google Scholar 

  63. A. Nakajima, Q. D. M. Khosru, T. Yoshimoto, and S. Yokoyama. Microelectron. Reliab., 2002, 42, 1823. https://doi.org/10.1016/S0026-2714(02)00095-1

    Article  CAS  Google Scholar 

  64. A. Nakajima, Q. D. M. Khosru, T. Yoshimoto, T. Kasai, and S. Yokoyama. Appl. Phys. Let., 2003, 83, 335. https://doi.org/10.1063/1.1590424

    Article  CAS  Google Scholar 

  65. Nakajima, H. Ishii, T. Kitade, and S. Yokoyama. IEEE International Electron Devices Meeting, Washington, DC, Dec 8-10, 2003. IEEE, 2003, 657. https://doi.org/10.1109/IEDM.2003.1269366

    Article  Google Scholar 

  66. S. Zhu and A. Nakajama. Jap. J. Appl. Phys., 2007, 46, 7699. https://doi.org/10.1143/JJAP.46.7699

    Article  CAS  Google Scholar 

  67. W.-J. Lee, J. H. Lee, C. O. Park, Y.-S. Lee, S.-J. Shin, and S.-A. Rha. J. Korean Phys. Soc., 2004, 45, 1352.

  68. L. L. Yusup, J.-M. Park, Y.-H. Noh, S.-J. Kim, W.-J. Lee, and S. Park. RSC Adv., 2016, 6, 68515. https://doi.org/10.1039/c6ra10909h

    Article  CAS  Google Scholar 

  69. L. L. Yusup, J.-M. Park, T. R. Mayagsari, Y.-K. Kwon, and W.-J. Lee. Appl. Surf. Sci., 2018, 432, Part B, 127. https://doi.org/10.1016/j.apsusc.2017.06.060

    Article  CAS  Google Scholar 

  70. S. Yokoyama, N. Ikeda, K. Kajikawa, and Y. Nakashima. Appl. Surf. Sci., 1998, 130-132, 352. https://doi.org/10.1016/S0169-4332(98)00083-X

    Article  CAS  Google Scholar 

  71. W.-J. Lee, U. J. Kim, C.-H. Han, M.-H. Chun, and S.-K. Rha. J. Korean Phys. Soc., 2005, 47, S598.

  72. K. Park, W.-D. Yun, B.-J. Choi, H.-D. Kim, W.-J. Lee, S.-K. Rha, and C. O. Park. Thin Solid Films, 2009, 517, 3975. https://doi.org/10.1016/j.tsf.2009.01.118

    Article  CAS  Google Scholar 

  73. S. Morishita, S. Sugahara, and M. Matsumura. Appl. Surf. Sci., 1997, 112, 198. https://doi.org/10.1016/S0169-4332(96)01006-9

    Article  CAS  Google Scholar 

  74. M. Edmonds, K. Sardashti, S. Wolf, E. Chagarov, M. Clemons, T. Kent, J. H. Park, K. Tang, P. C. McIntyre, N. Yoshida, L. Dong, R. Holmes, D. Alvarez, and A. C. Kummel. J. Chem. Phys., 2017, 146, 052820. https://doi.org/10.1063/1.4975081

    Article  CAS  PubMed  Google Scholar 

  75. S. Riedel, J. Sundqvist, and T. Gumprecht. Thin Solid Films, 2015, 577, 114. https://doi.org/10.1016/j.tsf.2015.01.045

    Article  CAS  Google Scholar 

  76. N.-K. Yu, C. H. Moon, J. Park, H.-B.-R. Lee, and B. Shong. Appl. Surf. Sci., 2021, 565, 150603. https://doi.org/10.1016/j.apsusc.2021.150603

    Article  CAS  Google Scholar 

  77. S. Suh, S. W. Ryu, S. Cho, J.-R. Kim, S. Kim, C. S. Hwang, and H. J. Kim. J. Vac. Sci. Technol. A, 2016, 34, 01A136. https://doi.org/1 0.1116/1.4937734

    Article  CAS  Google Scholar 

  78. A. Dangerfield, C. E. Nanayakkara, A. Mallikarjunan, X. Lei, R. M. Pearlstein, A. Derecskei-Kovacs, J. Cure, A. Esteve, and Y. J. Chabal. Chem. Mater., 2017, 29, 6022. https://doi.org/10.1021/acs.chemmater.7b01816

    Article  CAS  Google Scholar 

  79. F. C. Everstein and B. N. Put. J. Electrochem. Soc., 1973, 120, 106. https://doi.org/10.1149/1.2403378

    Article  CAS  Google Scholar 

  80. NIST X-ray Photoelectron Spectroscopy Database, Ver.4.1. USA: National Institute of Standards and Technology, 2012. http://doi.org/10.18434/T4T88K

  81. A. Ermolieff, P. Bernard, S. Marthon, and J. Camargo da Costa. J. Appl. Phys., 1986, 60, 3162. https://doi.org/10.1063/1.337729

    Article  CAS  Google Scholar 

  82. L. Kubler, R. Haug, J. J. Koulmann, D. Bolmont, K. Hill, and A. Jaegle. J. Non-Cryst. Solids, 1985, 77/78, 945. https://doi.org/10.1016/0022-3093(85)90817-8

    Article  CAS  Google Scholar 

  83. H. Lu, P. Lei, C.-T. Kao, M. Balseanu, L.-Q. Xia, and M. Sriram. US Patent Application, 2017/0053792, 2016.

  84. L.-Q. Xia, S. Nemani, M. Galiano, S. Pichai, S. Chandran, E. Yieh, D. Cote, R. Conti, D. Restaino, and D. Többen. J. Electrochem. Soc., 1999, 146, 1181. https://doi.org./10.1149/1.1391742

    Article  CAS  Google Scholar 

  85. M. Dai, Y. Wang, J. Kwon, M. D. Halls, and Y. J. Chabal. Nat. Mater., 2009, 8, 825. http://doi.org/10.1038/NMAT2514

    Article  CAS  Google Scholar 

  86. Y. Widjaja and C. B. Musgrave. Phys. Rev. B, 2001, 64, 205303. http://doi.org/10.1103/PhysRevB.64.205303

    Article  Google Scholar 

  87. M. A. Hall, C. Mui, and C. B. Musgrave. J. Phys. Chem. B, 2001, 105, 12068. https://doi.org/10.1021/jp0118874

    Article  CAS  Google Scholar 

  88. C. K. Ande, H. C. M. Knoops, K. de Peuter, M. van Drunen, S. D. Elliot, and W. M. M. Kessels. J. Phys. Chem. Lett., 2015, 6, 3610. https://doi.org/10.1021/acs.jpclett.5b01596

    Article  CAS  PubMed  Google Scholar 

  89. T. R. Mayangsari, L. L. Yusup, R. Hidayat, T. Chowdhury, Y.-K. Kwon, and W.-J. Lee. Appl. Surf. Sci., 2021, 535, 147727. http://doi.org/10.1016/j.apsusc.2020.147727

    Article  CAS  Google Scholar 

  90. J.-M. Park, S. J. Jang, S.-I. Lee, and W.-J. Lee. ACS Appl. Mater. Interfaces, 2018, 10, 9155. https://doi.org/10.1021/acsami.7b19741

    Article  CAS  PubMed  Google Scholar 

  91. H. S. Kim, S. M. Hwang, X. Meng, Y.-C. Byun, Y. C. Jung, A. V. Ravichandran, A. Sahoya, S. J. Kim, J. Ahn, L. Lee, X. Zhou, B. K. Hwang, and J. Kim. J. Mater. Chem. C, 2020, 37, 13033. https://doi.org/10.1039/d0tc02866e

    Article  CAS  Google Scholar 

  92. S. M. Hwang, H. S. Kim, D. N. Le, A. V. Ravichandran, A. Sahota, J. Lee, Y. C. Jung, S. J. Kim, J. Ahn, B. K. Hwang, L. Lee, X. Zhou, and J. Kim. ACS Appl. Nano Mater., 2021, 4, 2558. https://doi.org/10.1021/acsanm.0c03203

    Article  CAS  Google Scholar 

  93. H. Cho, N. Lee, H. Choi, H. Park, C. Jung, S. Song, H. Yuk, Y. Kim, J.-W. Kim, K. Kim, Y. Choi, S. Park, Y. Kwon, and H. Jeon. Appl. Sci., 2019, 9, 3531. http://doi.org/10.3390/app9173531

    Article  CAS  Google Scholar 

  94. H. Goto, K. Shibahara, and S. Yokoyama. Appl. Phys. Lett., 1996, 68, 3257. https://doi.org/10.1063/1.116566

    Article  CAS  Google Scholar 

  95. R. A. Ovanesyan, D. M. Hausmann, and S. Agarval. ACS Appl. Mater. Interfaces, 2015, 7, 10806. https://doi.org/10.1021/acsami.5b01531

    Article  CAS  PubMed  Google Scholar 

  96. H. S. Kim, X. Meng, S. J. Kim, A. T. Lucero, L. Cheng, Y.-C. Byun, J. S. Lee, S. M. Hwang, A. L. N. Kondusamy, R. M. Wallace, G. Goodman, A. S. Wan, M. Telgenhoff, B. K. Hwang, and J. Kim. ACS Appl. Mater. Interfaces, 2018, 28, 44825. https://doi.org/10.1021/acsami.8b15291

    Article  CAS  PubMed  Google Scholar 

  97. X. Meng, H. S. Kim, A. T. Lucero, S. M. Hwang, J. S. Lee, Y.-C. Byun, J. Kim, B. K. Hwang, X. Zhou, J. Young, and M. Telgenhoff. ACS Appl. Mater. Interfaces, 2018, 10, 14116. https://doi.org/10.1021/acsami.8b00723

    Article  CAS  PubMed  Google Scholar 

  98. W. Jang, H. Jeon, C. Kang, H. Song, J. Park, H. Kim, H. Seo, M. Leskela, and H. Jeon. Phys. Status. Solidi A, 2014, 211, 2166. https://doi.org/10.1002/pssa.201431162

    Article  CAS  Google Scholar 

  99. J.-M. Park, S. J. Jang, L. L. Yusup, W.-J. Lee, and S.-I. Lee. ACS Appl. Mater. Interfaces, 2016, 8, 20865. https://doi.org/10.1021/acsami.6b06175

    Article  CAS  PubMed  Google Scholar 

  100. H. C. M. Knoops, E. M. J. Braeken, K. de Peuetr, S. E. D. Potts, S. Haukka, V. Pore, and W. M. M. Knoops. ACS Appl. Mater. Interfaces, 2015, 7, 19857. https://doi.org/10.1021/acsami.5b06833

    Article  CAS  PubMed  Google Scholar 

  101. S. Weeks, G. Nowling, N. Fuchigami, M. Bowes, and K. Littau. J. Vac. Sci. Technol. A., 2016, 334, 01A140. https://doi.org/10.1116/1.4937993

    Article  CAS  Google Scholar 

  102. H. B. Profijt, S. E. Potts, M. C. M. van de Sanden, and W. M. M. Kessels. J. Vac. Sci. Technol. A, 2011, 29, https://doi.org/10.1116/1.3609974

    Article  CAS  Google Scholar 

  103. C. Vallee, M. Bonvalot, S. Belahcen, T. Yeghoyan, V. Jaffal, R. Vallat, A. Chaker, G. Lefevre, S. David, A. Bsiesy, N. Posseme, R. Gasssilloud, and A. Granier. J. Vac. Sci. Technol. A, 2020, 38, 033007. https://doi.org/10.1116/1.5140841

    Article  CAS  Google Scholar 

  104. A. Ovanesyan, D. M. Hausmann, and S. Agarval. ACS Appl. Mater. Interfaces, 2018, 10, 19153. https://doi.org/10.1021/acsami.8b01392

    Article  CAS  PubMed  Google Scholar 

  105. A.-M. Andringa, A. Perrotta, K. de Peuter, H. C. M. Knoops, W. M. M. Kessels, and M. Creatore. ACS Appl. Mater. Interfaces, 2015, 7, 22525. https://doi.org/10.1021/acsami.5b06801

    Article  CAS  PubMed  Google Scholar 

  106. J. Provine, P. Schindler, Y. Kim, S. P. Walch, H. J. Kim, K.-H. Kim, and F. B. Prinz. AIP Adv., 2016, 6, 065012. https://doi.org/10.1063/1.4954238

    Article  CAS  Google Scholar 

  107. A. P. Peter, T. Tomomi, E. Taishi, S. Eiichiro, A. Sepulveda, T. Blanquart, Y. Kimura, S. Subramanian, S. Baudot, B. Basoene, A. Gupta, A. Veloso, E. Capogreco, H. Mertens, J. Meersschaut, T. Conard, P. Dara, J. Geypen, G. Martinez, D. Batuk, S. Demuynck, and P. Morin. J. Vac. Sci. Techn. A, 2021, 39(4), 042401. https://doi.org/10.1116/6.0000821

    Article  CAS  Google Scholar 

  108. A. J. Niskanen, S. Chen, V. Pore, A. Fukazawa, H. Fukuda, and S. P. Haukka. US Patent 9564309, 2017.

  109. S. Ueda, T. Takayama, T. Ebisudani, T. Suzuki, and T. Kubota. US Patent 10381219, 2019.

  110. D. Ishikawa, A. Fukazawa, E. Shiba, S. Ueda, T. Ebisudani, S. J. Chun, Y. M. Yoo, Y. K. Min, S. Y. Kim, and J. W. Choi. US Patent 10529554, 2020.

  111. S. Ueda, T. Ebisudani, and T. Suzuki. US Patent 10580645, 2020.

  112. T. J. Colter and J. Chapple-Sokol. J. Electrochem. Soc., 1993, 140, 2071. https://doi.org/10.1149/1.2220766

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Yu. Vasiliev.

Ethics declarations

The authors declares that he has have no conflicts of interests.

Additional information

Russian Text © The Author(s), 2022, published in Zhurnal Strukturnoi Khimii, 2022, Vol. 63, No. 7, 93866.https://doi.org/10.26902/JSC_id93866

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasiliev, V.Y. COMPOSITION, STRUCTURE, AND FUNCTIONAL PROPERTIES OF THIN SILICON NITRIDE FILMS GROWN BY ATOMIC LAYER DEPOSITION FOR MICROELECTRONIC APPLICATIONS (REVIEW OF 25 YEARS OF RESEARCH). J Struct Chem 63, 1019–1050 (2022). https://doi.org/10.1134/S0022476622070022

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476622070022

Keywords

Navigation