Skip to main content
Log in

SYNTHESES, CHARACTERIZATION, AND CRYSTAL STRUCTURES OF COBALT(III) COMPLEXES DERIVED FROM 2-(((2- (PYRROLIDIN-1-YL)ETHYL)IMINO)METHYL) PHENOL WITH THE ANTIBACTERIAL ACTIVITY

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

A mononuclear cobalt(III) complex [CoL(NCS)2(OH2)] (1) and a trinuclear cobalt(III–II–III) complex [Co{CoLN31,1-N3)2(CH3OH)}2] (2), derived from the Schiff base ligand 2-(((2-(pyrrolidin-1-yl)ethyl)imino)methyl)phenol (HL), are synthesized and characterized by IR and electronic spectra. The structures of both complexes are studied in detail by single crystal X-ray diffraction. In complex 1, the Co(III) atom is coordinated by three donor atoms of the Schiff base ligand, two thiocyanate N atoms, and one water O atom, forming an octahedral geometry. In complex 2, the terminal Co(III) atom is coordinated by three donor atoms of the Schiff base ligand, two end-on azide N atoms, and one terminal azide N atom, forming an octahedral geometry. The central Co(II) atom is coordinated by four end-on azide N atoms and two methanol O atoms, forming an octahedral geometry. The complexes exhibit interesting antibacterial activities against B. subtilis and E. coli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

REFERENCES

  1. R. Cordeiro and M. Kachroo. Bioorg. Med. Chem. Lett., 2020, 30, 127655. https://doi.org/10.1016/j.bmcl.2020.127655

    Article  CAS  Google Scholar 

  2. Q. H. Weng, J. Q. Yi, X. P. Chen, D. W. Luo, Y. D. Wang, W. M. Sun, J. Kang, and Z. Z. Han. ACS Omega, 2020, 5, 24864-24870. https://doi.org/10.1021/acsomega.0c03591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. K. Rafiq, M. Khan, N. Muhammed, A. Khan, N. U. Rehman, B. E. M. Al-Yahyaei, M. Khiat, S. A. Halim, Z. R. Shah, R. Csuk, and A. Al-Harrasi. Med. Chem. Res., 2021, 30, 712-728. https://doi.org/10.1007/s00044-020-02696-0

    Article  CAS  Google Scholar 

  4. F. Naz, Kanwal, M. Latif, U. Salar, K. M. Khan, M. al-Rashida, I. Ali, B. Ali, M. Taha, and S. Perveen. Bioorg. Chem., 2020, 105, 104365. https://doi.org/10.1016/j.bioorg.2020.104365

    Article  CAS  PubMed  Google Scholar 

  5. Q. T. Nguyen, P. N. P. Thi, and V. T. Nguyen. Bioinorg. Chem. Appl., 2021, 2021, 6696344. https://doi.org/10.1155/2021/6696344

    Article  CAS  Google Scholar 

  6. J. Kiriratnikom, N. Laiwattanapaisarn, K. Vongnam, N. Thavornsin, P. Sae-ung, S. Kaeothip, A. Euapermkiati, S. Namuangruk, and K. Phomphrai. Inorg. Chem., 2021, 60, 6147-6151. https://doi.org/10.1021/acs.inorgchem.0c03732

    Article  CAS  PubMed  Google Scholar 

  7. N. S. Abdel-Kader, H. Moustafa, A. L. El-Ansary, O. E. Sherif, and A. M. Farghaly. New J. Chem., 2021, 45, 7714-7730. https://doi.org/10.1039/D0NJ05688J

    Article  CAS  Google Scholar 

  8. F. Aghvami, A. Ghaffari, M. Kucerahova, M. Dusek, R. Karimi-Nami, M. Amini, and M. Behzad. Polyhedron, 2021, 200, 115135. https://doi.org/10.1016/j.poly.2021.115135

    Article  CAS  Google Scholar 

  9. B. Pinchaipat, T. Khudkham, S. Wongsuwan, R. Chotima, K. Chainok, and T. Pila. Mater. Lett., 2021, 293, 129749. https://doi.org/10.1016/j.matlet.2021.129749

    Article  CAS  Google Scholar 

  10. T. A. Bazhenova, L. V. Zorina, S. V. Simonov, Y. V. Manakin, A. B. Kornev, K. A. Lyssenko, V. S. Mironov, I. F. Gilmutdinov, and E. B. Yagubskii. Inorg. Chim. Acta, 2021, 522, 120358. https://doi.org/10.1016/j.ica.2021.120358

    Article  CAS  Google Scholar 

  11. T. K. Karmakar, M. Ghosh, M. Fleck, G. Pilet, and D. Bandyopadhyay. J. Coord. Chem., 2012, 65, 2612-2622. https://doi.org/10.1080/00958972.2012.700514

    Article  CAS  Google Scholar 

  12. A. Banerjee, A. Guha, J. Adhikary, A. Khan, K. Manna, S. Dey, E. Zangrando, and D. Das. Polyhedron, 2013, 60, 102-109. https://doi.org/10.1016/j.poly.2013.05.014

    Article  CAS  Google Scholar 

  13. M. Kalita, P. Gogoi, P. Barman, and B. Sarma. J. Coord. Chem., 2014, 67, 2445-2454. https://doi.org/10.1080/00958972.2014.946917

    Article  CAS  Google Scholar 

  14. P. Pattanayak, J. L. Pratihar, D. Patra, P. Brandao, and V. Felix. Inorg. Chim. Acta, 2014, 418, 171-179. https://doi.org/10.1016/j.ica.2014.04.021

    Article  CAS  Google Scholar 

  15. M. Hasanzadeh, M. Salehi, M. Kubicki, S. M. Shahcheragh, G. Dutkiewicz, M. Pyziak, and A. Khaleghian. Transition Met. Chem., 2014, 39, 623-632. https://doi.org/10.1007/s11243-014-9841-x

    Article  CAS  Google Scholar 

  16. M. Ghosh, M. Layek, M. Fleck, R. Saha, and D. Bandyopadhyay. Polyhedron, 2015, 85, 312-319. https://doi.org/10.1016/j.poly.2014.08.014

    Article  CAS  Google Scholar 

  17. A. Frei, A. P. King, G. J. Lowe, A. K. Cain, F. L. Short, H. Dinh, A. G. Elliott, J. Zuegg, J. J. Wilson, and M. A. T. Blaskovich. Chem. Eur. J., 2020, 27, 2021-2029. https://doi.org/10.1002/chem.202003545

    Article  CAS  PubMed  Google Scholar 

  18. M. Jafari, M. Salehi, M. Kubicki, A. Arab, and A. Khaleghian. Inorg. Chim. Acta, 2017, 462, 329-335. https://doi.org/10.1016/j.ica.2017.04.007

    Article  CAS  Google Scholar 

  19. H. A. R. Pramanik, P. C. Paul, P. Mondal, and C. R. Bhattacharjee. J. Mol. Struct., 2015, 1100, 496-505. https://doi.org/10.1016/j.molstruc.2015.07.076

    Article  CAS  Google Scholar 

  20. M. N. Ahamad, K. Iman, M. K. Raza, M. Kumar, A. Ansari, M. Ahmad, and M. Shahid. Bioorg. Chem., 2020, 95, 103561. https://doi.org/10.1016/j.bioorg.2019.103561

    Article  CAS  PubMed  Google Scholar 

  21. S. H. Rahaman, H. K. Fun, and B. K. Ghosh. Polyhedron, 2000, 24, 3091-3097. https://doi.org/10.1016/j.poly.2005.06.028

    Article  CAS  Google Scholar 

  22. S. Naiya, C. Biswas, M. G. B. Drew, C. J. Gomez-Garcia, J. M. Clemente-Juan, and A. Ghosh. Inorg. Chem., 2010, 49, 6616-6627. https://doi.org/10.1021/ic1005456

    Article  CAS  PubMed  Google Scholar 

  23. G. Bhargavi, M. V. Rajasekharan, and J. P. Tuchagues. Inorg. Chim. Acta, 2009, 362, 3247-3252. https://doi.org/10.1016/j.ica.2009.02.032

    Article  CAS  Google Scholar 

  24. P. Bhowmik, S. Chattopadhyay, M. G. B. Drew, C. Diaz, and A. Ghosh. Polyhedron, 2010, 29, 2637-2642. https://doi.org/10.1016/j.poly.2010.06.014

    Article  CAS  Google Scholar 

  25. V. L. Gein, M. I. Kazantseva, L. I. Varkentin, T. M. Zamaraeva, A. N. Yankin, E. V. Beletskii, and V. V. Novikova. Russ. J. Gen. Chem., 2020, 90, 1426-1431. https://doi.org/10.1134/S1070363220080083

    Article  CAS  Google Scholar 

  26. L.-S. Feng, M.-L. Liu, K. Lv, Y. Chai, S. Wang, J. Cao, and H.-Y. Guo. Asian J. Chem., 2013, 25, 2327/2328. https://doi.org/10.14233/ajchem.2013.13280

    Article  CAS  Google Scholar 

  27. S. Haddad, S. Boudriga, T. N. Akhaja, J. P. Raval, F. Porzio, A. Soldera, M. Askri, M. Knorr, Y. Rousselin, M. M. Kubicki, and D. Rajani. New J. Chem., 2015, 39, 520-528. https://doi.org/10.1039/C4NJ01008F

    Article  CAS  Google Scholar 

  28. A. S. H. Alsamarrai and S. S. Abdulghani. Molecules, 2021, 26, 533. https://doi.org/10.3390/molecules26030533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. P. Prabhakaran, M. Subaraja, and P. Rajakumar. Chemistry Select, 2018, 3, 4687-4693. https://doi.org/10.1002/slct.201800033

    Article  CAS  Google Scholar 

  30. J. Huang, H. T. Liu, M. L. Liu, R. Zhang, L. H. Li, B. Wang, M. H. Wang, C. L. Wang, and Y. Lu. Bioorg. Med. Chem. Lett., 2015, 25, 5058-5063. https://doi.org/10.1016/j.bmcl.2015.10.027

    Article  CAS  Google Scholar 

  31. K. Lv, M.-L. Liu, L.-S. Feng, L.-Y. Sun, Y.-X. Sun, Z.-Q. Wei, and H.-Q. Guo. Eur. J. Med. Chem., 2012, 47, 619-625. https://doi.org/10.1016/j.ejmech.2011.10.048

    Article  CAS  PubMed  Google Scholar 

  32. E. Kocabas, A. B. Sariguney, F. Erci, R. Cakir-Koc, H. O. Kocabas, E. Torlak, and A. Coskun. Biointerface Res. Appl. Chem., 2021, 11, 12178-12185. https://doi.org/10.33263/BRIAC114.1217812185

    Article  CAS  Google Scholar 

  33. XSCANS, Data Collection and Reduction Program, Version 2.2. Madison, WI: Siemens Analytical X-ray Instruments Inc., 1994.

  34. G. M. Sheldrick. SADABS: Program for Empirical Absorption Correction of Area Detector Data. Göttingen, Germany: University of Göttingen, 1996.

  35. G. M. Sheldrick. SHELXTL version 5.1: Program for the Solution and Refinement of Crystal Structures. Madison, WI, USA: Bruker AXS Inc., 1999.

  36. G. M. Sheldrick. SHELXS/L-97: Programs for Crystal Structure Determination. Göttingen, Germany: University of Göttingen, 1997.

  37. J. Meletiadis, J. Meis, J. W. Mouton, J. P. Donnelly, and P. E. Verweij. J. Clin. Microbiol., 2000, 38, 2949-2954. https://doi.org/10.1128/JCM.38.8.2949-2954.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. J.-L. Hou, H.-Y. Wu, C.-B. Sun, Y. Bi, and W. Chen. Acta Chim. Slov., 2020, 67, 860-865. https://doi.org/10.17344/acsi.2020.5824

    Article  CAS  Google Scholar 

  39. S. Banerjee, J.-T. Chen, and C.-Z. Lu. Polyhedron, 2007, 26, 686-694. https://doi.org/10.1016/j.poly.2006.08.035

    Article  CAS  Google Scholar 

  40. M. Fleck, M. Layek, R. Saha, and D. Bandyopadhyay. Transition Met. Chem., 2013, 38, 715-724. https://doi.org/10.1007/s11243-013-9741-5

    Article  CAS  Google Scholar 

  41. N. Mondal, D. K. Dey, S. Mitra, and K. M. A. Malik. Polyhedron, 2000, 19, 2707-2711. https://doi.org/10.1016/S0277-5387(00)00584-2

    Article  CAS  Google Scholar 

  42. Y. Zhu and W.-H. Li. Transition Met. Chem., 2010, 35, 745-749. https://doi.org/10.1007/s11243-010-9388-4

    Article  CAS  Google Scholar 

  43. A. Hazari, L. K. Das, R. M. Kadam, A. Bauza, A. Frontera, and A. Ghosh. Dalton Trans., 2015, 44, 3862-3876. https://doi.org/10.1039/C4DT03446E

    Article  CAS  PubMed  Google Scholar 

  44. A. Datta, K. Das, C. Sen, N. K. Karan, J.-H. Huang, C.-H. Lin, E. Garribba, C. Sinha, T. Askun, and P. Celikboyun. Spectrochim. Acta, Part A, 2015, 148, 427-434. https://doi.org/10.1016/j.saa.2015.04.014

    Article  CAS  Google Scholar 

  45. M. Sarwar, A. M. Madalan, F. Lloret, M. Julve, and M. Andruh. Polyhedron, 2011, 30, 2414-2420. https://doi.org/10.1016/j.poly.2011.06.011

    Article  CAS  Google Scholar 

  46. A. Ray, S. Banerjee, R. J. Butcher, C. Desplanches, and S. Mitra. Polyhedron, 2008, 27, 2409-2415. https://doi.org/10.1016/j.poly.2008.04.018

    Article  CAS  Google Scholar 

  47. F. Luo, Y. Ning, M.-B. Luo, and G.-L. Huang. CrystEngComm, 2010, 12, 2769-2774. https://doi.org/10.1039/c000734j

    Article  CAS  Google Scholar 

  48. L. Pogany, J. Moncol, M. Gal, I. Salitros, and R. Boca. Inorg. Chim. Acta, 2017, 462, 23-29. https://doi.org/10.1016/j.ica.2017.03.001

    Article  CAS  Google Scholar 

  49. S. Banerjee, M. Nandy, S. Sen, S. Mandal, G. M. Rosair, A. M. Z. Slawin, C. J. Gomez Garcia, J. M. Clemente-Juan, E. Zangrando, N. Guidolin, and S. Mitra. Dalton Trans., 2011, 40, 1652-1661. https://doi.org/10.1039/c0dt00923g

    Article  CAS  PubMed  Google Scholar 

  50. Y.-M. Zhou, X.-R. Ye, F.-B. Xin, and X.-Q. Xin. Transition Met. Chem., 1999, 24, 118-120. https://doi.org/10.1023/A:1006989707001

    Article  CAS  Google Scholar 

  51. A. Ray, D. Sadhukhan, G. M. Rosair, C. J. Gomez-Garcia, and S. Mitra. Polyhedron, 2009, 28, 3542-3550. https://doi.org/10.1016/j.poly.2009.07.017

    Article  CAS  Google Scholar 

  52. R. W. Handel, H. Willms, G. B. Jameson, K. J. Berry, B. Moubaraki, K. S. Murray, and S. Brooker. Eur. J. Inorg. Chem., 2010, 3317-3327. https://doi.org/10.1002/ejic.201000288

    Article  CAS  Google Scholar 

  53. Y.-L. Sang, X.-S. Lin, and W.-D. Sun. Acta Chim. Slov., 2016, 63, 856-863. http://dx.doi.org/10.17344/acsi.2016.2795

    Article  Google Scholar 

  54. Y. M. Hao. Russ. J. Coord. Chem., 2018, 44, 45-51. https://doi.org/10.1134/S1070328418010050

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Sun.

Ethics declarations

The authors declare that they have no conflict of interests.

Additional information

Text © The Author(s), 2022, published in Zhurnal Strukturnoi Khimii, 2022, Vol. 63, No. 2, pp. 105-108.https://doi.org/10.26902/JSC_id87107

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, X., Chen, W., Hou, J. et al. SYNTHESES, CHARACTERIZATION, AND CRYSTAL STRUCTURES OF COBALT(III) COMPLEXES DERIVED FROM 2-(((2- (PYRROLIDIN-1-YL)ETHYL)IMINO)METHYL) PHENOL WITH THE ANTIBACTERIAL ACTIVITY. J Struct Chem 63, 165–175 (2022). https://doi.org/10.1134/S0022476622020019

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476622020019

Keywords

Navigation