Skip to main content
Log in

STRUCTURAL ASPECTS OF transcis ISOMERIZATION OF AZOBENZENE, 4,4′-AZOPYRIDINE, AND AZOXYBENZENE

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Processes of trans–cis isomerization of azobenzene (AZB), 4,4′-azopyridine (AZP), and azoxybenzene (AZOB) are studied using quantum chemical calculations at the DFT/B3LYP/cc-pvTZ level of theory. The chosen objects can serve as reference points when studying intramolecular rearrangements of numerous compounds containing an azo group and an azoxy bridging group. Geometric and electronic characteristics of trans and cis isomers AZB and AZP and four AZOB isomers, as well as transition states (TSs) between them, are determined. It is established that two AZOB isomers containing a semi-polar bond N→O have a significantly lower energy than two isomers with a cyclic NON bridging group. The transition between the low-energy trans–cis isomers proceeds via a TS while preserving the N→O bond so that the oxygen atom does not migrate between the nitrogen atoms. The NBO analysis of the electronic structure is performed, the factors stabilizing the obtained geometric configurations of all isomers and transition states are determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

REFERENCES

  1. A. A. Beharry and G. A. Woolley. Chem. Soc. Rev., 2011, 40(8), 4422-4437. https://doi.org/10.1039/c1cs15023e

    Article  CAS  PubMed  Google Scholar 

  2. M. Zhu and H. Zhou. Org. Biomol. Chem., 2018, 16(44), 8434-8445. https://doi.org/10.1039/C8OB02157K

    Article  CAS  PubMed  Google Scholar 

  3. S. B. Rhee and H. H. Jaffe. J. Am. Chem. Soc., 1973, 95(17), 5518-5521. https://doi.org/10.1021/ja00798a015

    Article  CAS  Google Scholar 

  4. A. Cembran, F. Bernardi, M. Garavelli, L. Gagliardi, and G. Orlandi. J. Am. Chem. Soc., 2004, 126(10), 3234-3243. https://doi.org/10.1021/ja038327y

    Article  CAS  PubMed  Google Scholar 

  5. C. R. Crecca and A. E. Roitberg. J. Phys. Chem. A, 2006, 110(26), 8188-8203. https://doi.org/10.1021/jp057413c

    Article  CAS  PubMed  Google Scholar 

  6. H. F. Qian, T. Tao, Y. N. Feng, Y. G. Wang, and W. Huang. J. Mol. Struct., 2016, 1123, 305-310. https://doi.org/10.1016/j.molstruc.2016.06.042

    Article  CAS  Google Scholar 

  7. The Cambridge Crystallographic Data Centre (CCDC). https://www.ccdc.cam.ac.uk/

  8. J. Harada and K. Ogawa. J. Am. Chem. Soc., 2004, 126(11), 3539-3544. https://doi.org/10.1021/ja038203l

    Article  CAS  PubMed  Google Scholar 

  9. M. Karanam and A. R. Choudhury. Cryst. Growth Des., 2013, 13(11), 4803-4814. https://doi.org/10.1021/cg400967k

    Article  CAS  Google Scholar 

  10. K. Gajda, B. Zarychta, Z. Daszkiewicz, A. A. Domański, and K. Ejsmont. Acta Crystallogr., Sect. C: Struct. Chem., 2014, 70(6), 575-579. https://doi.org/10.1107/S2053229614009942

    Article  CAS  Google Scholar 

  11. A. Mostad and C. Romming. Acta Chem. Scand., 1971, 25(10), 3561. https://doi.org/10.3891/acta.chem.scand.25-3561

    Article  CAS  Google Scholar 

  12. O. S. Bushuyev, A. Tomberg, T. Friščić, and C. J. Barrett. J. Am. Chem. Soc., 2013, 135(34), 12556-12559. https://doi.org/10.1021/ja4063019

    Article  CAS  PubMed  Google Scholar 

  13. L. Hoesch and H. P. Weber. Helv. Chim. Acta, 1977, 60(8), 3015-3024. https://doi.org/10.1002/hlca.19770600853

    Article  CAS  Google Scholar 

  14. T. Tsuji, H. Takashima, H. Takeuchi, T. Egawa, and S. Konaka. J. Mol. Struct., 2000, 554, 203-210. https://doi.org/10.1016/S0022-2860(00)00672-4

    Article  CAS  Google Scholar 

  15. M. Okubo and H. Hyakutake. Bull. Chem. Soc. Jpn., 1988, 61(8), 3005-3007. https://doi.org/10.1246/bcsj.61.3005

    Article  CAS  Google Scholar 

  16. A. Albini and M. Alpegiani. Chem. Rev., 1984, 84(1), 43-71. https://doi.org/10.1021/cr00059a004

    Article  CAS  Google Scholar 

  17. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox. Gaussian09, Revision A.02. Wallingford, CT: Gaussian, Inc., 2016.

  18. D. A. Becke. J. Chem. Phys., 1993, 98(2), 1372-1377. https://doi.org/10.1063/1.464304

    Article  CAS  Google Scholar 

  19. C. Lee, W. Yang, and R. G. Parr. Phys. Rev. B., 1988, 37, 785-789. https://doi.org/10.1103/PhysRevB.37.785

    Article  CAS  Google Scholar 

  20. T. H. Dunning. J. Chem. Phys., 1989, 90, 1007-1023. https://doi.org/10.1063/1.456153

    Article  CAS  Google Scholar 

  21. C. Peng, P. Y. Ayala, H. B. Schlegel, and M. J. Frisch. J. Comput. Chem., 1996, 17(1), 49-56. https://doi.org/10.1002/(SICI)1096-987X(19960115)17:1%3C49::AID-JCC5%3E3.0.CO;2-0

    Article  CAS  Google Scholar 

  22. E. D. Glendening, J. K. Badenhoop, A. E. Reed, J. E. Carpenter, J. A. Bohmann, C. M. Morales, C. R. Landis, and F. Weinhold. NBO 6.0. Madison, WI: Theoretical Chemistry Institute, University of Wisconsin, 2013.

  23. Chemcraft – graphical software for visualization of quantum chemistry computations. https://www.chemcraftprog.com

  24. R. Dabrowski, K. Kenig, and Z. Raszewski. Mol. Cryst. Liq. Cryst., 1980, 61(1–2), 61-78. https://doi.org/10.1080/00268948008081984

    Article  CAS  Google Scholar 

Download references

Funding

The statement of the problem and quantum chemical calculations of trans–cis isomerization were funded by the Ministry of Education and Science of the Russian Federation (project No. FZZM-2020-0006).

The NBO calculations were funded by RFBR (project number 19-33-90046) using the computing resources of the Shared Research Center of ISUCT (with the support of the Ministry of Education and Science of the Russian Federation, agreement No. 075-15-2021-671).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. I. Giricheva.

Ethics declarations

The authors declare that they have no conflict of interests.

Additional information

Russian Text © The Author(s), 2021, published in Zhurnal Strukturnoi Khimii, 2021, Vol. 62, No. 12, pp. 2097-2108.https://doi.org/10.26902/JSC_id87024

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giricheva, N.I., Lebedev, I.S., Fedorov, M.S. et al. STRUCTURAL ASPECTS OF transcis ISOMERIZATION OF AZOBENZENE, 4,4′-AZOPYRIDINE, AND AZOXYBENZENE. J Struct Chem 62, 1976–1987 (2021). https://doi.org/10.1134/S0022476621120179

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476621120179

Keywords

Navigation