Skip to main content
Log in

ACTIVATION OF Au–CeO2 COMPOSITES PREPARED BY PULSED LASER ABLATION IN THE REACTION OF LOW-TEMPERATURE CO OXIDATION

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

The Au/CeO2 composite catalyst is prepared by pulsed laser ablation in liquid (PLAL). Dispersions of gold and cerium are prepared in alcohol and water, respectively, mixed, dried, and annealed at various temperatures: 450 °C, 600 °C, 800 °C. It is shown by a number of physical methods (XPS, XRD, HRTEM, Raman spectroscopy) that a contact interaction between gold and cerium oxide particles is formed as a result of annealing in air or upon exposure to a reaction medium. The XPS data indicate that, along with metal particles, there is an ionic gold state with Eb(Au4f7/2) = 85.3 eV. According to the Raman spectroscopy data (λ = 785 nm), CeO2 nanoparticles are highly defective and that gold clusters are stabilized on vacancies in the cerium oxide lattice. Catalytic tests in the CO+O2 reaction show that annealing at 450-600 °C in air or in the reaction medium activates the catalysts and initiates intense low-temperature activity. The calculated values of the active site turnover frequency (TOF) are 0.08 s–1 at 0 °C and 0.17 s–1 at 20 °C. According to the XRD and XPS data, annealing the sample at 800°C leads to its complete reduction and to the sintering of gold into large particles resulting in a loss of low-temperature activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

REFERENCES

  1. M. Haruta and M. Daté. Appl. Catal., A: Gen., 2001, 222(1/2), 427-437. https://doi.org/10.1016/S0926-860X(01)00847-X

    Article  CAS  Google Scholar 

  2. M. Haruta. J. New Mater. Electrochem. Syst., 2004, 7(3), 163-172.

  3. P. Thormählen, M. Skoglundh, E. Fridell, and B. Andersson. J. Catal., 1999, 188(2), 300-310. https://doi.org/10.1006/jcat.1999.2665

    Article  CAS  Google Scholar 

  4. L. Lukashuk, N. Yigit, R. Rameshan, E. Kolar, D. Teschner, M. Hävecker, A. Knop-Gericke, R. Schlögl, K. Föttinger, and G. Rupprechter. ACS Catal., 2018, 8(9), 8630-8641. https://doi.org/10.1021/acscatal.8b01237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. H. Guan, J. Lin, B. Qiao, X. Yang, L. Li, S. Miao, J. Liu, A. Wang, X. Wang, and T. Zhang. Angew. Chem., Int. Ed., 2016, 55(8), 2820-2824. https://doi.org/10.1002/anie.201510643

    Article  CAS  Google Scholar 

  6. A. Beniya and S. Higashi. Nat. Catal., 2019, 2(7), 590-602. https://doi.org/10.1038/s41929-019-0282-y

    Article  CAS  Google Scholar 

  7. M. Okumura, Y. Kitagawa, M. Haruta, and K. Yamaguchi. Appl. Catal., A, 2005, 291(1/2), 37-44. https://doi.org/10.1016/j.apcata.2005.02.042

    Article  CAS  Google Scholar 

  8. X. Zhou, W. Xu, G. Liu, D. Panda, and P. Chen. J. Am. Chem. Soc., 2010, 132(1), 138-146. https://doi.org/10.1021/ja904307n

    Article  CAS  Google Scholar 

  9. F. Boccuzzi and A. Chiorino. J. Phys. Chem. B, 2000, 104(23), 5414-5416. https://doi.org/10.1021/jp000749w

    Article  CAS  Google Scholar 

  10. T. R. Reina, S. Ivanova, M. A. Centeno, and J. A. Odriozola. Front. Chem., 2013, 1, 1-9. https://doi.org/10.3389/fchem.2013.00012

    Article  PubMed  PubMed Central  Google Scholar 

  11. W. Deng, C. Carpenter, N. Yi, and M. Flytzani-Stephanopoulos. Top. Catal., 2007, 44(1/2), 199-208. https://doi.org/10.1007/s11244-007-0293-9

    Article  CAS  Google Scholar 

  12. J. D. Grunwaldt and A. Baiker. J. Phys. Chem. B, 1999, 103(6), 1002-1012. https://doi.org/10.1021/jp983206j

    Article  CAS  Google Scholar 

  13. L. Li, Y. Liu, Q. Wang, X. Zhou, J. Li, S. Song, and H. Zhang. CrystEngComm, 2019, 21(46), 7108-7113. https://doi.org/10.1039/c9ce01301f

    Article  CAS  Google Scholar 

  14. B. Qiao, J. Lin, A. Wang, Y. Chen, T. Zhang, and J. Liu. Chin. J. Catal., 2015, 36(9), 1505-1511. https://doi.org/10.1016/S1872-2067(15)60889-0

    Article  CAS  Google Scholar 

  15. F. Boccuzzi, A. Chiorino, M. Manzoli, P. Lu, T. Akita, S. Ichikawa, and M. Haruta. J. Catal., 2001, 202(2), 256-267. https://doi.org/10.1006/jcat.2001.3290

    Article  CAS  Google Scholar 

  16. G. Preda, A. Migani, K. M. Neyman, S. T. Bromley, F. Illas, and G. Pacchioni. J. Phys. Chem. C, 2011, 115(13), 5817-5822. https://doi.org/10.1021/jp111147y

    Article  CAS  Google Scholar 

  17. X. Wei, B. Shao, Y. Zhou, Y. Li, C. Jin, J. Liu, and W. Shen. Angew. Chem., Int. Ed., 2018, 57(35), 11289-11293. https://doi.org/10.1002/anie.201805975

    Article  CAS  Google Scholar 

  18. B. Qiao, J. Liu, Y. G. Wang, Q. Lin, X. Liu, A. Wang, J. Li, T. Zhang, and J. Liu. ACS Catal., 2015, 5(11), 6249-6254. https://doi.org/10.1021/acscatal.5b01114

    Article  CAS  Google Scholar 

  19. Z. Wang, H. Yang, R. Liu, S. Xie, Y. Liu, H. Dai, H. Huang, and J. Deng. J. Hazard. Mater., 2020, 392, 122258. https://doi.org/10.1016/j.jhazmat.2020.122258

    Article  CAS  PubMed  Google Scholar 

  20. B. He, J. Shen, D. Ma, J. Wang, S. Cheng, and Z. Tian. Appl. Surf. Sci., 2018, 462, 399-408. https://doi.org/10.1016/j.apsusc.2018.08.149

    Article  CAS  Google Scholar 

  21. P. Xin, J. Li, Y. Xiong, X. Wu, J. Dong, W. Chen, Y. Wang, L. Gu, J. Luo, H. Rong, C. Chen, Q. Peng, D. Wang, and Y. Li. Angew. Chem., 2018, 130(17), 4732-4736. https://doi.org/10.1002/ange.201801103

    Article  Google Scholar 

  22. L. S. Kibis, A. I. Stadnichenko, S. V. Koscheev, V. I. Zaikovskii, and A. I. Boronin. J. Phys. Chem. C, 2015, 119(5), 2523-2529. https://doi.org/10.1021/jp510684s

    Article  CAS  Google Scholar 

  23. Y. Li, S. Li, M. Bäumer, E. A. Ivanova-Shor, and L. V. Moskaleva. ACS Catal., 2020, 10(5), 3164-3174. https://doi.org/10.1021/acscatal.9b05175

    Article  CAS  Google Scholar 

  24. H. Zeng, X. W. Du, S. C. Singh, S. A. Kulinich, S. Yang, J. He, and W. Cai. Adv. Funct. Mater., 2012, 22(7), 1333-1353. https://doi.org/10.1002/adfm.201102295

    Article  CAS  Google Scholar 

  25. S. Reichenberger, G. Marzun, M. Muhler, and S. Barcikowski. ChemCatChem, 2019, 11(18), 4489-4518. https://doi.org/10.1002/cctc.201900666

    Article  CAS  Google Scholar 

  26. E. Jiménez, K. Abderrafi, R. Abargues, J. L. Valdés, and J. P. Martínez-Pastor. Langmuir, 2010, 26(10), 7458-7463. https://doi.org/10.1021/la904179x

    Article  CAS  PubMed  Google Scholar 

  27. N. Mintcheva, P. Srinivasan, J. B. B. Rayappan, A. A. Kuchmizhak, S. Gurbatov, and S. A. Kulinich. Appl. Surf. Sci., 2020, 507, 145169. https://doi.org/10.1016/j.apsusc.2019.145169

    Article  CAS  Google Scholar 

  28. E. M. Slavinskaya, A. I. Stadnichenko, V. V. Muravyov, T. Y. Kardash, E. A. Derevyannikova, V. I. Zaikovskii, O. A. Stonkus, I. N. Lapin, V. A. Svetlichnyi, and A. I. Boronin. ChemCatChem, 2018, 10(10), 2232-2247. https://doi.org/10.1002/cctc.201702050

    Article  CAS  Google Scholar 

  29. G. Bajaj and R. K. Soni. Appl. Surf. Sci., 2010, 256(21), 6399-6402. https://doi.org/10.1016/j.apsusc.2010.04.024

    Article  CAS  Google Scholar 

  30. J. Zhang, G. Chen, D. Guay, M. Chaker, and D. Ma. Nanoscale, 2014, 6(4), 2125-2130. https://doi.org/10.1039/c3nr04715f

    Article  CAS  PubMed  Google Scholar 

  31. J. F. Moulder, W. F. Strickle, P. E. Sobol, and K. D. Bomben. Handbook of X-ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data / Ed. J. Chastain. Eden Prairie, Minnesota: Perkin-Elmer Corporation, Physical Electronics Division, 1992.

  32. A. I. Stadnichenko, V. V. Murav’ev, V. A. Svetlichnyi, and A. I. Boronin. J. Struct. Chem., 2017, 58(6), 1152-1159. https://doi.org/10.1134/S0022476617060129

    Article  CAS  Google Scholar 

  33. D. A. Svintsitskiy, L. S. Kibis, A. I. Stadnichenko, V. I. Zaikovskii, S. V. Koshcheev, and A. I. Boronin. Kinet. Catal., 2013, 54(4), 497-504. https://doi.org/10.1134/S0023158413040198

    Article  CAS  Google Scholar 

  34. E. A. Lashina, E. M. Slavinskaya, N. A. Chumakova, A. I. Stadnichenko, A. N. Salanov, G. A. Chumakov, and A. I. Boronin. Chem. Eng. Sci., 2020, 212, 115312. https://doi.org/10.1016/j.ces.2019.115312

    Article  CAS  Google Scholar 

  35. A. I. Stadnichenko, S. V. Koshcheev, and A. I. Boronin. J. Struct. Chem., 2015, 56(3). https://doi.org/10.1134/S0022476615030245

    Article  CAS  Google Scholar 

  36. T. Y. Kardash, E. A. Derevyannikova, E. M. Slavinskaya, A. I. Stadnichenko, V. A. Maltsev, A. V. Zaikovskii, S. A. Novopashin, A. I. Boronin, and K. M. Neyman. Front. Chem., 2019, 7, 1-17. https://doi.org/10.3389/fchem.2019.00114

    Article  PubMed  PubMed Central  Google Scholar 

  37. P. Jafarkhani, S. Dadras, M. J. Torkamany, and J. Sabbaghzadeh. Appl. Surf. Sci., 2010, 256(12), 3817-3821. https://doi.org/10.1016/j.apsusc.2010.01.032

    Article  CAS  Google Scholar 

  38. E. D. Fakhrutdinova, A. V. Shabalina, M. A. Gerasimova, A. L. Nemoykina, O. V. Vodyankina, and V. A. Svetlichnyi. Materials (Basel), 2020, 13(9). https://doi.org/10.3390/ma13092054

    Article  CAS  PubMed Central  Google Scholar 

  39. N. V. Tarasenko, A. V. Butsen, E. A. Nevar, and N. A. Savastenko. Appl. Surf. Sci., 2006, 252(13), 4439-4444. https://doi.org/10.1016/j.apsusc.2005.07.150

    Article  CAS  Google Scholar 

  40. J. Xu, J. Harmer, G. Li, T. Chapman, P. Collier, S. Longworth, and S. C. Tsang. Chem. Commun., 2010, 46(11), 1887-1889. https://doi.org/10.1039/b923780a

    Article  CAS  Google Scholar 

  41. X. D. Zhou and W. Huebner. Appl. Phys. Lett., 2001, 79(21), 3512-3514. https://doi.org/10.1063/1.1419235

    Article  CAS  Google Scholar 

  42. J. Zdravković, B. Simović, A. Golubović, D. Poleti, I. Veljković, M. Šćepanović, and G. Branković. Ceram. Int., 2015, 41(2), 1970-1979. https://doi.org/10.1016/j.ceramint.2014.08.122

    Article  CAS  Google Scholar 

  43. W. Haiss, N. T. K. Thanh, J. Aveyard, and D. G. Fernig. Anal. Chem., 2007, 79(11), 4215-4221. https://doi.org/10.1021/ac0702084

    Article  CAS  PubMed  Google Scholar 

  44. L. Tandon, P. Thakur, P. Khullar, and M. Singh. J. Mol. Liq., 2020, 318, 114319. https://doi.org/10.1016/j.molliq.2020.114319

    Article  CAS  Google Scholar 

  45. M. Chandra, A. M. Dowgiallo, and K. L. Knappenberger. J. Am. Chem. Soc., 2010, 132(44), 15782-15789. https://doi.org/10.1021/ja106910x

    Article  CAS  PubMed  Google Scholar 

  46. C. Schilling, A. Hofmann, C. Hess, and M. V. Ganduglia-Pirovano. J. Phys. Chem. C, 2017, 121(38), 20834-20849. https://doi.org/10.1021/acs.jpcc.7b06643

    Article  CAS  Google Scholar 

  47. R. Zamiri, H. A. Ahangar, A. Kaushal, A. Zakaria, G. Zamiri, D. Tobaldi, and J. M. F. Ferreira. PLoS One, 2015, 10(4), 1-11. https://doi.org/10.1371/journal.pone.0122989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. L. Brugnoli, A. M. Ferrari, B. Civalleri, A. Pedone, and M. C. Menziani. J. Chem. Theory Comput., 2018, 14(9), 4914-4927. https://doi.org/10.1021/acs.jctc.8b00600

    Article  CAS  PubMed  Google Scholar 

  49. D. Avisar and T. Livneh. Vib. Spectrosc., 2016, 86, 14-16. https://doi.org/10.1016/j.vibspec.2016.05.006

    Article  CAS  Google Scholar 

  50. T. Taniguchi, T. Watanabe, N. Sugiyama, A. K. Subramani, H. Wagata, N. Matsushita, and M. Yoshimura. J. Phys. Chem. C, 2009, 113(46), 19789-19793. https://doi.org/10.1021/jp9049457

    Article  CAS  Google Scholar 

  51. E. A. Derevyannikova, T. Y. Kardash, A. I. Stadnichenko, O. A. Stonkus, E. M. Slavinskaya, V. A. Svetlichnyi, and A. I. Boronin. J. Phys. Chem. C, 2019, 123, 1320-1334. https://doi.org/10.1021/acs.jpcc.8b11009

    Article  CAS  Google Scholar 

  52. F. Vindigni, M. Manzoli, A. Damin, T. Tabakova, and A. Zecchina. Chem. – Eur. J., 2011, 17(16), 4356-4361. https://doi.org/10.1002/chem.201003214

    Article  CAS  PubMed  Google Scholar 

  53. X. P. Fu, L. W. Guo, W. W. Wang, C. Ma, C. J. Jia, K. Wu, R. Si, L. D. Sun, and C. H. Yan. J. Am. Chem. Soc., 2019, 141(11), 4613-4623. https://doi.org/10.1021/jacs.8b09306

    Article  CAS  PubMed  Google Scholar 

  54. A. Shelyug, R. I. Palomares, M. Lang, and A. Navrotsky. Phys. Rev. Mater., 2018, 2(9), 1-13. https://doi.org/10.1103/PhysRevMaterials.2.093607

    Article  CAS  Google Scholar 

  55. Y. Lee, G. He, A. J. Akey, R. Si, M. Flytzani-Stephanopoulos, and I. P. Herman. J. Am. Chem. Soc., 2011, 133(33), 12952-12955. https://doi.org/10.1021/ja204479j

    Article  CAS  PubMed  Google Scholar 

  56. R. V. Gulyaev, E. M. Slavinskaya, S. A. Novopashin, D. V. Smovzh, A. V. Zaikovskii, D. Yu. Osadchii, O. A. Bulavchenko, S. V. Korenev, and A. I. Boronin. Appl. Catal., B, 2014, 147, 132-143. https://doi.org/10.1016/j.apcatb.2013.08.043

    Article  CAS  Google Scholar 

  57. T. Y. Kardash, E. M. Slavinskaya, R. V. Gulyaev, A. V. Zaikovskii, S. A. Novopashin, and A. I. Boronin. Top. Catal., 2017, 60(12-14), 898-913. https://doi.org/10.1007/s11244-017-0755-7

    Article  CAS  Google Scholar 

  58. M. Vorokhta, I. Khalakhan, I. Matolínová, J. Nováková, S. Haviar, J. Lančok, M. Novotný, H. Yoshikawa, and V. Matolín. Appl. Surf. Sci., 2017, 396. https://doi.org/10.1016/j.apsusc.2016.10.119

    Article  CAS  Google Scholar 

  59. J. Beran, V. Matolín, and K. Mašek. Ceram. Int., 2015, 41(3), 4946-4952. https://doi.org/10.1016/j.ceramint.2014.12.057

    Article  CAS  Google Scholar 

  60. A. I. Stadnichenko, V. V. Murav’ev, S. V. Koscheev, V. I. Zaikovskii, H. A. Aleksandrov, K. M. Neyman, and A. I. Boronin. Surf. Sci., 2019, 679, 273-283. https://doi.org/10.1016/j.susc.2018.10.002

    Article  CAS  Google Scholar 

  61. M. Monai, T. Montini, M. Melchionna, T. Duchoň, P. Kúš, N. Tsud, K. C. Prince, V. Matolin, R. J. Gorte, and P. Fornasiero. Appl. Catal. B, 2016, 197, 271-279. https://doi.org/10.1016/j.apcatb.2015.10.001

    Article  CAS  Google Scholar 

  62. A. I. Stadnichenko, S. V. Koshcheev, and A. I. Boronin. J. Struct. Chem., 2015, 56(3), 557-565. https://doi.org/10.1134/S0022476615030245

    Article  CAS  Google Scholar 

  63. M. Y. Smirnov, E. I. Vovk, A. V. Kalinkin, and V. I. Bukhtiyarov. Kinet. Catal., 2017, 58(6), 809-815. https://doi.org/10.1134/S0023158417060106

    Article  CAS  Google Scholar 

  64. W. F. Egelhoff. Surf. Sci. Rep., 1987, 6(6-8), 253-415. https://doi.org/10.1016/0167-5729(87)90007-0

    Article  Google Scholar 

  65. B. Koslowski, H. Boyen, and C. Wilderotter. Surf. Sci., 2001, 475, 1-10. https://doi.org/10.1016/S0039-6028(00)00986-9

    Article  CAS  Google Scholar 

  66. H. Tsai, E. Hu, K. Perng, M. Chen, J. C. Wu, and Y. S. Chang. Surf. Sci., 2003, 537(1-3). https://doi.org/10.1016/S0039-6028(03)00640-X

    Article  CAS  Google Scholar 

  67. K. Juodkazis, J. Juodkazyte, V. Jasulaitiene, A. Lukinskas, and B. Šebeka. Electrochem. Commun., 2000, 2(7), 503-507. https://doi.org/10.1016/S1388-2481(00)00069-2

    Article  CAS  Google Scholar 

  68. V. Matolín, M. Cabala, I. Matolínov, M. Škoda, J. Libra, M. Václavů, K. C. Prince, T. Skála, H. Yoshikawa, Y. Yamashita, S. Ueda, and K. Kobayashi. J. Phys. D: Appl. Phys., 2009, 42(11), 4-11. https://doi.org/10.1088/0022-3727/42/11/115301

    Article  CAS  Google Scholar 

  69. M. Mittal, A. Gupta, and O. P. Pandey. Sol. Energy, 2018, 165, 206-216. https://doi.org/10.1016/j.solener. 2018.03.033

  70. M. P. Casaletto, A. Longo, A. Martorana, A. Prestianni, and A. M. Venezia. Surf. Interface Anal., 2006, 38, 215-218. https://doi.org/10.1002/sia.2180

    Article  CAS  Google Scholar 

  71. Y. Li, Y. Tian, Y. Zheng, T. Ge, Z. Fu, T. Jiao, M. Wang, H. Huang, and C. Zuo. Can. J. Chem. Eng., 2020, 98(3), 767-774. https://doi.org/10.1002/cjce.23659

    Article  CAS  Google Scholar 

  72. A. Y. Klyushin, T. C. R. Rocha, M. Hävecker, A. Knop-Gericke, and R. Schlögl. Phys. Chem. Chem. Phys., 2014, 16(17), 7881-7886. https://doi.org/10.1039/c4cp00308j

    Article  CAS  PubMed  Google Scholar 

  73. J. H. Carter, P. M. Shah, E. Nowicka, S. J. Freakley, D. J. Morgan, S. Golunski, and G. J. Hutchings. Front. Chem., 2019, 7, 1-8. https://doi.org/10.3389/fchem.2019.00443

    Article  PubMed  PubMed Central  Google Scholar 

  74. J. H. Carter, S. Althahban, E. Nowicka, S. J. Freakley, D. J. Morgan, P. M. Shah, S. Golunski, C. J. Kiely, and G. J. Hutchings. ACS Catal., 2016, 6(10), 6623-6633. https://doi.org/10.1021/acscatal.6b01275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. P. Rodriguez, D. Plana, D. J. Fermin, and M. T. M. Koper. J. Catal., 2014, 311, 182-189. https://doi.org/10.1016/j.jcat.2013.11.020

    Article  CAS  Google Scholar 

  76. Y. Pan, N. Nilius, H.-J. Freund, J. Paier, C. Penschke, and J. Sauer. Phys. Rev. Lett., 2013, 111(20), 206101. https://doi.org/10.1103/PhysRevLett.111.206101

    Article  PubMed  Google Scholar 

  77. M. Lin, C. Mochizuki, B. An, Y. Inomata, T. Ishida, M. Haruta, and T. Murayama. ACS Catal., 2020, 10(16), 9328-9335. https://doi.org/10.1021/acscatal.0c01966

    Article  CAS  Google Scholar 

  78. E. M. Slavinskaya, T. Y. Kardash, O. A. Stonkus, R. V. Gulyaev, I. N. Lapin, V. A. Svetlichnyi, and A. I. Boronin. Catal. Sci. Technol., 2016, 6(17), 6650-6666. https://doi.org/10.1039/C6CY00319B

    Article  CAS  Google Scholar 

  79. T. Ishida, T. Murayama, A. Taketoshi, and M. Haruta. Chem. Rev., 2020, 120(2), 464-525. https://doi.org/10.1021/acs.chemrev.9b00551

    Article  CAS  PubMed  Google Scholar 

  80. M. A. Centeno, T. R. Reina, S. Ivanova, O. H. Laguna, and J. A. Odriozola. Catalysts, 2016, 6(10). https://doi.org/10.3390/catal6100158

    Article  CAS  Google Scholar 

  81. E. Özkan, P. Cop, F. Benfer, A. Hofmann, M. Votsmeier, J. M. Guerra, M. Giar, C. Heiliger, H. Over, and B. M. Smarsly. J. Phys. Chem. C, 2020, 124(16), 8736-8748. https://doi.org/10.1021/acs.jpcc.0c00010

    Article  CAS  Google Scholar 

Download references

Funding

This work was funded by the Ministry of Science and Higher Education of the Russian Federation within the State Assignment for IC SB RAS (project AAAA-A21-121011390053-4).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. I. Stadnichenko or A. I. Boronin.

Ethics declarations

The authors declare that they have no conflict of interests.

Additional information

Russian Text © The Author(s), 2021, published in Zhurnal Strukturnoi Khimii, 2021, Vol. 62, No. 12, pp. 2039-2056.https://doi.org/10.26902/JSC_id84790

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stadnichenko, A.I., Slavinskaya, E.M., Fedorova, E.A. et al. ACTIVATION OF Au–CeO2 COMPOSITES PREPARED BY PULSED LASER ABLATION IN THE REACTION OF LOW-TEMPERATURE CO OXIDATION. J Struct Chem 62, 1918–1934 (2021). https://doi.org/10.1134/S0022476621120118

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476621120118

Keywords

Navigation