Skip to main content
Log in

RADIATION-INDUCED CHANGES IN THE STRUCTURE AND FERROELECTRIC PROPERTIES OF Pb5Ge3O11 SINGLE CRYSTALS

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Perfect stoichiometric Pb5Ge3O11 single crystals are irradiated with 60Co γ-rays (1·106 Rad) and high-energy electrons (0.13 e/cm2, 0.89 e/cm2, 2.18 e/cm2, 3.07·1018 e/cm2) at the Karpov Institute of Physical Chemistry. Changes in the structural and ferroelectric properties of the crystals are traced depending on the irradiation type and dose. Dielectric spectroscopy and second harmonic generation of laser radiation are used to determine the ferroelectric phase transition temperature TС. X-ray diffraction experiments are carried out on a Bruker D8 QUEST diffractometer with a PHOTON-II detector (MoKα radiation, 295 K). Based on the experimental structural amplitudes the crystal structures of the crystals before and after irradiation are solved and refined. Structural characteristics of the non-irradiated crystal are consistent with the previously reported data at the achieved significant improvement of their accuracy (R(F > 2σ(F)) = 0.028). Despite radiation defects introduced, Pb5Ge3O11 single crystals retain the crystal structure and ferroelectric properties. It is shown that irradiation performed maintains the polar structure at 295 K and causes changes in atomic displacements of separate atoms. It is supposed that a radiation-induced change in the Pb5Ge3O11 structure is of the high-temperature type and forms a new structural state close to a high-temperature modification of a non-irradiated Pb5Ge3O11 crystal. Irradiation leads to a gradual decrease in distortions and structure symmetrization. It is important that the kinetics and final products of these processes appreciably differ from those observed only upon thermal impacts. Polar shifts are calculated, and their dependence on the irradiation dose indicates a tendency to a decrease in polar shifts in lead germanate ferroelectric during irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

REFERENCES

  1. G. S. Was. Fundamentals of Radiation Materials Science. Heidelberg: Springer, 2007.

  2. R. E. Stoller. Comprehensive Nuclear Materials: Primary Radiation Damage Formation. New York: Elsevier, 2012. https://doi.org/10.1016/B978-0-08-056033-5.00027-6

  3. A. Holmes-Siedle and L. Adams. Handbook of Radiation Effects. New York: Oxford Univ. Press, 1993.

  4. S. A. Ivanov and A. I. Stash. Russ. J. Inorg. Chem., 2020, 65, 1789-1819. https://doi.org/10.1134/S0036023620120049

    Article  CAS  Google Scholar 

  5. E. V. Peshikov. Radiatsionnye effekty v segnetoelektrikakh (Radiation Effects in Ferroelectrics). Tashkent: Fan, 1986. [In Russian]

  6. S. P. Solovev, I. I. Kuzmin, and V. V. Zakurkin. Radiatsionnye effekty v titanate bariya (Radiation Effects in Barium Titanate) / Ed. N. V. Belov. Moscow: Nauka, 1973. [In Russian]

  7. J. F. Scott. Applications of Modern Ferroelectrics. Science, 2007, 315, 5814, 954-959. https://doi.org/10.1126/science.1129564

    Article  CAS  PubMed  Google Scholar 

  8. J. F. Scott. Ferroelectric Memories. Berlin: Springer, 2000. https://doi.org/10.1007/978-3-662-04307-3

  9. R. Whatmore. Ferroelectric Materials. In: Springer Handbook of Electronic and Photonic Materials / Eds. S. Kasap and P. Capper. Springer, Cham, 2017, 589-614. https://doi.org/10.1007/978-3-319-48933-9_26

  10. S. M. Said, M. F. M. Sabri, and F. Salleh. Ferroelectrics and Their Applications. Reference Module in Materials Science and Materials Engineering. Elsevier, 2017. https://doi.org/10.1016/B978-0-12-803581-8.04143-6

  11. Ferroelectric Materials for Energy Applications / Eds. H. Huang and J. F. Scott. Wiley VCH, 2018. https://doi.org/10.1002/9783527807505

  12. Handbook of Advanced Dielectric, Piezoelectric and Ferroelectric Materials, Synthesis, Properties and Applications / Ed. Z.-G. Ye. Woodhead Publishing, 2008.

  13. W. Cao. In: Disorder and Strain-Induced Complexity in Functional Materials / Eds. T. Kakeshita, T. Fukuda, A. Saxena, and A. Planes: Springer Series in Materials Science, Vol. 148. Springer, Berlin, Heidelberg, 2012, 113-134. https://doi.org/10.1007/978-3-642-20943-7_7

  14. H. Hasegawa, M. Shimada, and M. Koizumi. J. Mater. Sci., 1973, 8, 1725-1730. https://doi.org/10.1007/BF02403523

    Article  CAS  Google Scholar 

  15. S. Nanamatsu, H. Sugiyama, and K. Doi. J. Phys. Soc. Jpn, 1971, 31, 616. https://doi.org/10.1143/JPSJ.31.616

    Article  CAS  Google Scholar 

  16. A. A. Bush and Yu. N. Venevtsev. Monokristally s segnetoelektricheskimi I rodstvennymi svoistvami v sisteme PbO–GeO2 i vozmozhnye oblasti ikh primeneniia (PbO–GeO2 Single Crystals with Ferroelectric and Related Properties and Their Possible Application). Moscow: NIITÉKhIM, 1981. (In Russ.)

  17. H. Iwasaki, S. Miyazawa, H. Koizumi, K. Sugii, and N. Niizeki. J. Appl. Phys., 1972, 43, 4907. https://doi.org/10.1063/1.1661044

    Article  CAS  Google Scholar 

  18. R. E. Newnham, R. M. Wolfe, and C. N. Darlington. J. Solid State Chem., 1973, 6, 378. https://doi.org/10.1016/0022-4596(73)90226-0

    Article  CAS  Google Scholar 

  19. Y. J. Iwata. J. Phys. Soc. Jpn., 1977, 43, 961. https://doi.org/10.1143/JPSJ.43.961

    Article  CAS  Google Scholar 

  20. M. I. Kay, R. E. Newnham and R. W. Wolfe. Ferroelectrics, 1975, 9, 1. https://doi.org/10.1080/00150197508240073

    Article  CAS  Google Scholar 

  21. S. T. Konobeevskii. Deistvie oblucheniya na materialy (Effect of Irradiation on Materials). Moscow: Atomizdat, 1967. [In Russian]

  22. G. J. Dienes and G. H. Vineyard. Radiation Effects in Solids, New York: Interscience, 1957.

  23. Yu. V. Trushin. Sov. Phys. Tech. Phys., 1991, 36, 1236.

  24. A. A. Bush, K. E. Kamentsev, M. V. Provotorov, and T. N. Trushkova. Phys. Solid State, 2004, 46, 1722. https://doi.org/10.1134/1.1799193

    Article  CAS  Google Scholar 

  25. S. K. Kurtz and J. P. Dougherty. Method for the Detection of Noncentrosymmetry. In: Solids in Systematic Material Analysis. New York: Springer, 1978, Vol. 4, 269-342. https://doi.org/10.1016/B978-0-12-587804-3.50017-0

  26. J. Р. Dougherty and S. K. Kurtz. J. Appl. Crystallogr., 1976, 9, 145-158. https://doi.org/10.1107/S0021889876010789

    Article  Google Scholar 

  27. S. Yu. Stefanovich and Yu. N. Venevtsev. Phys. Status Solidi A, 1973, 20, K49. https://doi.org/10.1002/pssa.2210200156

    Article  CAS  Google Scholar 

  28. APEX 3. Madison, WI: Bruker AXS Inc., 2014.

  29. G. M. Sheldrick. Acta Crystallogr., Sect. A, 2008, 64, 112-122. https://doi.org/10.1107/S0108767307043930

    Article  Google Scholar 

  30. G. M. Sheldrick. Acta Crystallogr., Sect. C, 2015, 71, 3-8. https://doi.org/10.1107/S2053229614024218

    Article  Google Scholar 

  31. V. D. Salnikov, S. Yu. Stefanovich, V. V. Chechkin, Yu. Ya. Tomashpolskii, and Yu. N. Venevtsev. Ferroelectrics, 1974, 8, 491-493. https://doi.org/10.1080/00150197408234137

    Article  CAS  Google Scholar 

  32. E. V. Kolontsova. Sov. Phys. – Usp., 1987, 30, 64. https://doi.org/10.3367/UFNr.0151.198701g.0149

    Article  CAS  Google Scholar 

  33. D. Orobengoa, C. Capillas, M. I. Aroyo, and J. M. Perez-Mato. J. Appl. Crystallogr., 2009, 42, 820-833. https://doi.org/10.1107/S0021889809028064

    Article  CAS  Google Scholar 

  34. J. M. Perez-Mato, D. Orobengoa, and M. I. Aroyo. Acta Crystallogr., Sect. A, 2010, 66, 558-590. https://doi.org/10.1107/S0108767310016247

    Article  CAS  Google Scholar 

  35. H. J. Reyher, M. Pape, and N. J. Hausfeld. J. Phys.: Condens. Matter, 2001, 13, 3767. https://doi.org/10.1088/0953-8984/13/16/307

    Article  CAS  Google Scholar 

Download references

Funding

The work was supported by RFBR (grant No. 20-03-00337).

XRD studies were supported by the Ministry of Sciences and Higher Education of the Russian Federation and were carried out using the facilities of the Molecular Structure Research Center, Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, Russia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Stash.

Ethics declarations

The authors declare that they have no conflict of interests.

Additional information

Russian Text © The Author(s), 2021, published in Zhurnal Strukturnoi Khimii, 2021, Vol. 62, No. 12, pp. 1999-2015.https://doi.org/10.26902/JSC_id84213

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stash, A.I., Ivanov, S.A., Boiko, V.M. et al. RADIATION-INDUCED CHANGES IN THE STRUCTURE AND FERROELECTRIC PROPERTIES OF Pb5Ge3O11 SINGLE CRYSTALS. J Struct Chem 62, 1880–1895 (2021). https://doi.org/10.1134/S0022476621120088

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476621120088

Keywords

Navigation