Skip to main content
Log in

INFLUENCE OF THE ELECTROLYTE NATURE ON THE PERFORMANCE OF IONIC EAP SENSORS WITH METAL AND POLYMER ELECTRODES

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

We consider micromechanical sensors based on a polymer ion-exchange membrane with metal and polymer electrodes: ionic polymer-metal composites (IPMCs) and ionic polymer-polymer composites (IP2Cs). The 20×5×0.3 mm sensors are studied when impregnated with various electrolytes such as deionized water, aqueous 0.1 M CuSO4 solution, ethylene glycol, and ionic liquid. It is shown that IPMC sensors impregnated with deionized water exhibit the strongest response (130 mV/cm). Adding CuSO4 decreases the output voltage of IPMC and IP2C sensors. To the contrary, IPMC and IP2C sensors impregnated with ethylene glycol and ionic liquid show longer times of continuous work. The decrease of output voltage in the case of ethylene glycol and ionic liquid compared to deionized water is most pronounced in IPMC sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

REFERENCES

  1. Z. Zhu, T. Horiuchi, K. Kruusamäe, L. Chang, and K. Asaka. J. Phys. Chem. B, 2016, 120(12), 3215-3225. https://doi.org/10.1021/acs.jpcb.5b12634

    Article  CAS  PubMed  Google Scholar 

  2. T. Wang, M. Farajollahi, Y. S. Choi, I-T. Lin, J. E. Marshall, N. M. Thompson, S. Kar-Narayan, J. D. W. Madden, and S. K. Smoukov. Interface Focus, 2016, 6(4), 20160026. https://doi.org/10.1098/rsfs.2016.0026

    Article  PubMed  PubMed Central  Google Scholar 

  3. M. Paajanen, J. Lekkala, and K. Kirjavainen. Sens. Actuators A, 2000, 84(1/2), 95-102. https://doi.org10.1016/S0924-4247(99)00269-1

  4. D. R. Bacon. IEEE Trans. Son. Ultrason., 1982, 29(1), 18-25. https://doi.org/10.1109/T-SU.1982.31298

    Article  Google Scholar 

  5. Z. Zhu, T. Horiuchi, K. Takagi, J. Takeda, L. Chang, and K. Asaka. J. Appl. Phys., 2016, 120(8), 084906. https://doi.org/10.1063/1.4961732

    Article  CAS  Google Scholar 

  6. Y. Wang and J. T. W. Yeow. J. Sens., 2009, 2009, 1-24. https://doi.org10.1155/2009/493904

  7. W. Takashima, T. Uesugi, M. Fukui, M. Kaneko, and K. Kaneto. Synth. Met., 1997, 85(1-3), 1395/1396. https://doi.org/10.1016/S0379-6779(97)80289-5

    Article  CAS  Google Scholar 

  8. I. K. Khmelnitskiy, V. V. Gorodilov, V. E. Kalyonov, A. V. Lagosh, and A. P. Broyko. Proc. of the 2018 IEEE Conf. of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus), St. Petersburg, Russia, Jan 29 - Feb 1, 2018. IEEE, 2018, 411-414. https://doi.org/10.1109/EIConRus.2018.8317121

  9. Z. Zhu, T. Horiuchi, K. Kruusamäe, L. Chang, and K. Asaka. Smart Mater. Struct., 2016, 25(5), 055024. https://doi.org/10.1088/0964-1726/25/5/055024

    Article  CAS  Google Scholar 

  10. V. E. Kalyonov, D. O. Testov, N. I. Alekseev, A. P. Broyko, and V. V. Luchinin. Proc. of the 2020 IEEE Conf. of Russian Young Researchers in Electrical and Electronic Engineering (ElConRus), St. Petersburg, Russia, Jan 27-30, 2020. IEEE, 2020, 1531–1534. https://doi.org/10.1109/EIConRus49466.2020.9039419

  11. I.-K. Oh and J.-H. Jeon. In: Ionic Polymer Metal Composites (IPMC). Smart Multi-Functional Materials and Artificial Muscles / Ed. M. Shahinpoor. R. Soc. Chem., 2016, 1, 148-168. https://doi.org/10.1039/9781782622581-00148

  12. N. I. Alekseyev, A. P. Broyko, Z. I. Evseyev, V. E. Kaleonov, I. K. Khmelnitsky, A. V. Korlyakov, A. V. Lagosh, V. V. Luchinin, and S. A. Smagulova. AIP Conf. Proc., 2018, 2041, 020027. https://doi.org/10.1063/1.5079358

  13. I. K. Khmelnitskiy, V. M. Aivazyan, N. I. Alekseyev, A. P. Broyko, V. V. Luchinin, and D. O. Testov. Nano Microsyst. Technol., 2021, 23(1), 32-43. https://doi.org/10.17587/nmst.23.32-43

    Article  Google Scholar 

  14. G. Di Pasquale, L. Fortuna, S. Graziani, M. , A. Pollicino, and E. Umana. Smart Mater. Struct., 2011, 20(4), 045014. https://doi.org/10.1088/0964-1726/20/4/045014

    Article  CAS  Google Scholar 

  15. G. Di Pasquale, S. Graziani, F. G. Messina, A. Pollicino, R. Puglisi, and E. Umana. Smart Mater. Struct., 2014, 23(3), 035018. https://doi.org/10.1088/0964-1726/23/3/035018

    Article  CAS  Google Scholar 

  16. Y. Li, R. Tanigawa, and H. Okuzaki. Smart Mater. Struct., 2014, 23(7), 074010. https://doi.org/10.1088/0964-1726/23/7/074010

    Article  CAS  Google Scholar 

  17. R. Caponetto, V. De Luca, G. Di Pasquale, S. Graziani, F. Sapuppo, and E. Umana. IEEE Trans. Instrum. Meas., 2014, 63(5), 1347-1355. https://doi.org/10.1109/TIM.2014.2298172

    Article  Google Scholar 

  18. D. S. Song, D. G. Han, K. Rhee, D. M. Kim, and J. Y. Jho. Macromol. Res., 2017, 25(12), 1205-1211. https://doi.org/10.1007/s13233-017-5156-z

    Article  CAS  Google Scholar 

  19. R. Chattaraj, S. Bhaumik, S. Khan, and D. Chatterjee. Sens. Actuators A, 2018, 270, 65-71. https://doi.org/10.1016/j.sna.2017.12.041

    Article  CAS  Google Scholar 

  20. I. K. Khmelnitskiy, L. O. Vereshagina, V. E. Kalyonov, A. P. Broyko, A. V. Lagosh, V. V. Luchinin, and D. O. Testov. J. Phys.: Conf. Ser., 2017, 857(1), 012018. https://doi.org/10.1088/1742-6596/857/1/012018

    Article  CAS  Google Scholar 

  21. I. K. Khmelnitskiy, V. M. Aivazyan, K. A. Andryukhin, A. V. Lagosh, and V. E. Kalyonov. Proc. of the 2019 IEEE Conf. of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus), St. Petersburg, Russia, Jan 28-31, 2019. IEEE, 2019, 815-818. https://doi.org/10.1109/EIConRus.2019.8656744

  22. V. M. Aivazyan, I. K. Khmelnitskiy, N. I. Alekseev, A. P. Broyko, and V. V. Luchinin. Proc. of the 2020 IEEE Conf. of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus), St. Petersburg, Russia, Jan 27-30, 2020. IEEE, 2020, 1008-1012. https://doi.org/10.1109/EIConRus49466.2020.9039486

  23. G. Di Pasquale, S. Graziani, C. Gugliuzzo, and A. Pollicino. AIMS Mater. Sci., 2017, 4(5), 1062-1077. https://doi.org/10.3934/matersci.2017.5.1062

    Article  CAS  Google Scholar 

  24. R. Tiwari and K. J. Kim. Smart Mater. Struct., 2013, 22(1), 015017. https://doi.org/10.1088/0964-1726/22/1/015017

    Article  CAS  Google Scholar 

Download references

Funding

This work was funded by the Russian Science Foundation, project No. 21-19-00719.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. K. Khmelnitskiy.

Ethics declarations

The authors declare that they have no conflict of interests.

Additional information

Russian Text © The Author(s), 2021, published in Zhurnal Strukturnoi Khimii, 2021, Vol. 62, No. 12, pp. 1942-1952.https://doi.org/10.26902/JSC_id83838

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khmelnitskiy, I.K., Aivazyan, V.M., Alekseev, N.I. et al. INFLUENCE OF THE ELECTROLYTE NATURE ON THE PERFORMANCE OF IONIC EAP SENSORS WITH METAL AND POLYMER ELECTRODES. J Struct Chem 62, 1826–1835 (2021). https://doi.org/10.1134/S0022476621120027

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476621120027

Keywords

Navigation