Skip to main content

Advertisement

Log in

Improving electrochemical stability and electromechanical efficiency of ipmcs: tuning ionic liquid concentration

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

In the field of soft actuators, Ionomeric Polymer Metal Composites (IPMC)-like devices are a trend, exhibiting large displacement with low applied voltage. Its working mechanism is related to solvated electrolytes migration, thus the number of counterions exchanged with the polymeric membrane plays a key role in the device’s performance. Although many kinds of inorganic and organic ions were used, there were few efforts to address a specific concentration value of electrolyte solutions. Ionic liquids (ILs) are used in IPMC to provide electrochemical stability; however, their mechanical performance is usually poor. In this study we aimed to determine a specific value of 1-butyl-3-methylimidazolium chloride ([BMIM]Cl) ionic liquid concentration between 0.1, 0.3, and 0.5 mol L-1 that grants electrochemical stability at different relative humidities with best electromechanical efficiency. We synthesized [BMIM]Cl and characterized it through Nuclear Magnetic Resonance (NMR), Fourier Transform Infrared Spectroscopy (FTIR), and Cyclic Voltammetry (CV). The electrochemical behavior of Nafion®/Pt-based IPMC exchanged with IL was studied through Electrochemical Impedance Spectroscopy (EIS), CV, and Chronoamperometry (CA). Electromechanical properties were measured through blocking force and displacement. All the IPMC tests were carried out at three distinct controlled humidities (30%, 60%, and 90%). Herein, we tuned the IL concentration in 0.3 mol L-1, delivering electrochemical stability with the best electromechanical yield regardless of the relative humidity. This result will be important when bringing electrolyte mixtures to further enhance the performance and efficiency of these devices.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Wu Y, Zhao W, Qiang Y, Chen Z, Wang L, Gao X (2020) Fang, π-π interaction between fluorinated reduced graphene oxide and acridizinium ionic liquid: synthesis and anti-corrosion application. Carbon N Y 159:292–302. https://doi.org/10.1016/j.carbon.2019.12.047

    Article  CAS  Google Scholar 

  2. Schmidt M, Heider U, Kuehner A, Oesten R, Jungnitz M, Ignat’ev N, Sartori P, (2001) Lithium fluoroalkylphosphates: a new class of conducting salts for electrolytes for high energy lithium-ion batteries. J Power Sources https://doi.org/10.1016/S0378-7753(01)00640-1

    Article  Google Scholar 

  3. Giffin GA (2016) Ionic liquid-based electrolytes for “beyond lithium” battery technologies. J Mater Chem A 4:13378–13389. https://doi.org/10.1039/c6ta05260f

    Article  CAS  Google Scholar 

  4. Macfarlane DR, Huang J, Forsyth M (1999) Lithium-doped plastic crystal electrolytes exhibiting fast ion conduction for secondary batteries. Nature 402:792–794. https://doi.org/10.1038/45514

    Article  CAS  Google Scholar 

  5. Ito Y, Nohira T (2000) Non-conventional electrolytes for electrochemical applications. Electrochim Acta 45:2611–2622. https://doi.org/10.1016/S0013-4686(00)00341-8

    Article  CAS  Google Scholar 

  6. Gang X (1993) Electrolyte additives for phosphoric acid fuel cells. J Electrochem Soc 140:896. https://doi.org/10.1149/1.2056224

    Article  CAS  Google Scholar 

  7. Doyle M, Choi SK, Proulx G (2000) High-temperature proton conducting membranes based on perfluorinated ionomer membrane-ionic liquid composites. J Electrochem Soc 147:34. https://doi.org/10.1149/1.1393153

    Article  CAS  Google Scholar 

  8. Quijano G, Couvert A, Amrane A, Darracq G, Couriol C, Le Cloirec P, Paquin L, Carrié D (2011) Potential of ionic liquids for VOC absorption and biodegradation in multiphase systems. Chem Eng Sci 66:2707–2712. https://doi.org/10.1016/j.ces.2011.01.047

    Article  CAS  Google Scholar 

  9. Dupont J, Consorti CS, Spencer J, Room Temperature Molten Salts (2000) Neoteric “Green” solvents for chemical reactions and processes. J Braz Chem Soc 11:337–344. https://doi.org/10.1590/S0103-50532000000400002

    Article  CAS  Google Scholar 

  10. Dupont J (2004) On the solid, liquid and solution structural organization of imidazolium ionic liquids. J Braz Chem Soc 15:341–350. https://doi.org/10.1590/S0103-50532004000300002

    Article  CAS  Google Scholar 

  11. Consorti CS, De Souza RF, Dupont J, Suarez PAZ (2001) Líquidos iônicos contendo o cátion dialquilimidazólio: estrutura, propriedades físico-químicas e comportamento em solução. Quim Nova 24:830–837

    Article  CAS  Google Scholar 

  12. Holbrey JD, Seddon KR, Liquids I (1999) Clean Technol Environ Policy 1:223–236. https://doi.org/10.1007/s100980050036

    Article  Google Scholar 

  13. Bhandari B, Lee G-Y, Ahn S-H (2012) A review on IPMC material as actuators and sensors: fabrications, characteristics and applications. Int J Precis Eng Manuf 13:141–163. https://doi.org/10.1007/s12541-012-0020-8

    Article  Google Scholar 

  14. Hao M, Wang Y, Zhu Z, He Q, Zhu D, Luo M (2019) A compact review of IPMC as soft actuator and sensor: current trends, challenges, and potential solutions from our recent work. Front Robot AI https://doi.org/10.3389/frobt.2019.00129

    Article  PubMed  PubMed Central  Google Scholar 

  15. LI L, Guo X, Liu Y, Zhang D, Liao W-H (2022) Dynamic modeling of a fish tail actuated by IPMC actuator based on the absolute nodal coordinate formulation. Smart Mater Struct https://doi.org/10.1088/1361-665X/ac8c0a

    Article  Google Scholar 

  16. Gupta A, Mukherjee S (2022) Actuation characteristics and experimental identification of IPMC actuator for underwater biomimetic robotic application. Mater Today Proc 62:7461–7466. https://doi.org/10.1016/j.matpr.2022.03.388

    Article  Google Scholar 

  17. Zuquello AG, Saccardo MC, Gonçalves R, Tozzi KA, Barbosa R, Hirano LA, Scuracchio CH (2022) PI controller for IPMC actuators based on Nafion®/PT using machine vision for feedback response at different relative humidities. Mater Res https://doi.org/10.1590/1980-5373-mr-2021-0518

    Article  Google Scholar 

  18. Wang HS, Cho J, Park HW, Jho JY, Park JH (2021) Ionic polymer–metal composite actuators driven by methylammonium formate for high-voltage and long-term operation. J Ind Eng Chem 96:194–201. https://doi.org/10.1016/j.jiec.2021.01.021

    Article  CAS  Google Scholar 

  19. Saccardo MC, Zuquello AG, Gonçalves R, Tozzi KA, Barbosa R, Hirano LA, Scuracchio CH (2021) Electromechanical evaluation of ionomeric polymer-metal composites using video analysis. Mater Res https://doi.org/10.1590/1980-5373-mr-2021-0317

    Article  Google Scholar 

  20. Ma S, Zhang Y, Liang Y, Ren L, Tian W, Ren L (2020) Adv Funct Mater 30:1–9. https://doi.org/10.1002/adfm.201908508. High-Performance Ionic-Polymer–Metal Composite: Toward Large-Deformation Fast-Response Artificial Muscles

    Article  CAS  Google Scholar 

  21. Ostretsov KI, Orekhov YD, Khmelnitskiy IK, Aivazyan VM, Testov OA, Gareev KG, Testov DO, Karelin AM, Bagrets VS (2021) Heart Rate Monitor Based on IPMC Sensor. Int Conf Electr Eng Photonics IEEE https://doi.org/10.1109/EExPolytech53083.2021.9614697

    Article  Google Scholar 

  22. Das S, Ghosh S, Guin R, Das A, Das B, Saha S, Bhattacharya S, Bepari B, Bhaumik S (2022). IPMC as EMG Sensor to Diagn Human Arm Act https://doi.org/10.1007/978-981-16-7011-4_11

    Article  Google Scholar 

  23. MohdIsa WH, Hunt A, HosseinNia SH (2019) Sensing and self-sensing actuation methods for ionic polymer-metal composite (IPMC): a review. Sensors (Switzerland) https://doi.org/10.3390/s19183967

    Article  Google Scholar 

  24. Tiwari R, Kim KJ (2010) Disc-shaped ionic polymer metal composites for use in mechano-electrical applications. Smart Mater Struct https://doi.org/10.1088/0964-1726/19/6/065016

    Article  Google Scholar 

  25. Ma S, Zhang Y, Liang Y, Ren L, Tian W, Ren L (2020) High-performance ionic‐polymer–metal composite: toward large‐deformation fast‐response artificial muscles. Adv Funct Mater 30:1908508. https://doi.org/10.1002/adfm.201908508

    Article  CAS  Google Scholar 

  26. Horiuchi T, Mihashi T, Fujikado T, Oshika T, Asaka K (2017) Voltage-controlled IPMC actuators for accommodating intra-ocular lens systems. Smart Mater Struct 26:045021. https://doi.org/10.1088/1361-665X/aa61e8

    Article  Google Scholar 

  27. Gonçalves R, Tozzi KA, Saccardo MC, Zuquello AG, Scuracchio CH (2020) Nafion-based ionomeric polymer/metal composites operating in the air: theoretical and electrochemical analysis. J Solid State Electrochem https://doi.org/10.1007/s10008-020-04520-6

    Article  Google Scholar 

  28. Bernat J, Kolota J (2018) Adaptive observer-based control for an IPMC actuator under varying humidity conditions. Smart Mater Struct 27:055004. https://doi.org/10.1088/1361-665X/aab56e

    Article  Google Scholar 

  29. Saccardo MC, Zuquello AG, Tozzi KA, Gonçalves R, Hirano LA, Scuracchio CH (2020) Counter-ion and humidity effects on electromechanical properties of Nafion®/Pt composites. Mater Chem Phys https://doi.org/10.1016/j.matchemphys.2020.122674

    Article  Google Scholar 

  30. Shahinpoor M, Kim KJ (2000) Effects of counter-ions on the performance of IPMCs, in: Smart Structure Material 2000 Electroactive Polymer Actuators Devices, SPIE, : p. 110 https://doi.org/10.1117/12.387769

  31. Nemat-Nasser S, Wu Y (2003) Comparative experimental study of ionic polymer–metal composites with different backbone ionomers and in various cation forms. J Appl Phys 93:5255–5267. https://doi.org/10.1063/1.1563300

    Article  CAS  Google Scholar 

  32. Correia DM, Barbosa JC, Costa CM, Reis PM, Esperança JMSS, De Zea Bermudez V, Lanceros-Méndez S (2019) Poly(vinylidene fluoride)-based soft actuators. J Phys Chem C 123:12744–12752. https://doi.org/10.1021/acs.jpcc.9b00868

    Article  CAS  Google Scholar 

  33. Liu Y, Liu S, Lin J, Wang D, Jain V, Montazami R, Heflin JR, Li J, Madsen L (2010) Zhang QM (2010) transports of ionic liquids in ionic polymer conductor network composite actuators. Electroact Polym Acta Dev 7642:76421A. https://doi.org/10.1117/12.847618

    Article  Google Scholar 

  34. Okada T, Xie G, Gorseth O, Kjelstrup S, Nakamura N, Arimura T (1998) Ion and water transport characteristics of Nafion membranes as electrolytes. Electrochim Acta 43:3741–3747. https://doi.org/10.1016/S0013-4686(98)00132-7

    Article  CAS  Google Scholar 

  35. Motupally S, Becker AJ, Weidner JW (2000) Diffusion of water in Nafion 115 membranes. J Electrochem Soc 147:3171–3177. https://doi.org/10.1149/1.1393879

    Article  CAS  Google Scholar 

  36. Onishi K, Sewa S, Asaka K, Fujiwara N, Oguro K (2001) The effects of counter ions on characterization and performance of a solid polymer electrolyte actuator. Electrochim Acta 46:1233–1241. https://doi.org/10.1016/S0013-4686(00)00695-2

    Article  CAS  Google Scholar 

  37. Hwan Lee S, Cho E, Ryoun J, Youn (2007) Rheological behavior of polypropylene/layered silicate nanocomposites prepared by melt compounding in shear and elongational flows. J Appl Polym Sci 103:3506–3515. https://doi.org/10.1002/app.25204

    Article  CAS  Google Scholar 

  38. Shahinpoor M (2016) Fundamentals of ionic polymer metal composites (IPMCs), in: RSC smart mater. Royal Soc Chem https://doi.org/10.1039/9781782622581-00001

    Article  Google Scholar 

  39. Leronni A, Bardella L (2021) Modeling actuation and sensing in ionic polymer metal composites by electrochemo-poromechanics. J Mech Phys Solids 148:104292. https://doi.org/10.1016/j.jmps.2021.104292

    Article  CAS  Google Scholar 

  40. Duncan AJ, Sarles SA, Leo DJ, Long TE, Akle BJ, Bennett MD (2008) Optimization of active electrodes for novel ionomer-based ionic polymer transducers. Electroact Polym Actuators Devices 2008 6927:69271Q. https://doi.org/10.1117/12.776575

    Article  CAS  Google Scholar 

  41. Green MD, Wang D, Hemp ST, Choi JH, Winey KI, Heflin JR, Long TE (2012) Synthesis of imidazolium ABA triblock copolymers for electromechanical transducers. Polym (Guildf) 53:3677–3686. https://doi.org/10.1016/j.polymer.2012.06.023

    Article  CAS  Google Scholar 

  42. Margaretta E, Fahs GB, Inglefield DL, Jangu C, Wang D, Heflin JR, Moore RB, Long TE (2016) Imidazolium-containing ABA triblock copolymers as electroactive devices. ACS Appl Mater Interfaces 8:1280–1288. https://doi.org/10.1021/acsami.5b09965

    Article  CAS  PubMed  Google Scholar 

  43. Liu S, Liu W, Liu Y, Lin JH, Zhou X, Janik MJ, Colby RH, Zhang Q (2010) Influence of imidazolium-based ionic liquids on the performance of ionic polymer conductor network composite actuators. Polym Int 59:321–328. https://doi.org/10.1002/pi.2771

    Article  CAS  Google Scholar 

  44. Lee JW, Hong SM, Koo CM (2014) High-performance polymer ionomer-ionic liquid membrane IPMC actuator. Res Chem Intermed 40:41–48. https://doi.org/10.1007/s11164-013-1453-0

    Article  CAS  Google Scholar 

  45. Pandita SD, Lim HT, Yoo Y, Park HC (2006) Degradation mechanism of ionic polymer actuators containing ionic liquids as a mixed solvent. Smart Struct Mater 2006 Electroact Polym Actuators Devices 6168:616816. https://doi.org/10.1117/12.658115

    Article  CAS  Google Scholar 

  46. Kim D, Kim KJ (2006) Electro-chemo-mechanical interpretation of Pt and Au-electroded relaxationless ionic polymer-metal composites. Smart Struct Mater 2006 Electroact Polym Actuators Devices 6168:616811. https://doi.org/10.1117/12.654740

    Article  CAS  Google Scholar 

  47. Tang Y, Xue Z, Xie X, Zhou X (2016) Ionic polymer-metal composite actuator based on sulfonated poly(ether ether ketone) with different degrees of sulfonation, sensors actuators. A Phys 238:167–176. https://doi.org/10.1016/j.sna.2015.12.015

    Article  CAS  Google Scholar 

  48. Altınkaya E, Seki Y, Çetin L, Gürses BO, Özdemir O, Sever K, Sarıkanat M (2018) Characterization​ and ​analysis of ​m​otion ​m​echanism​ of electroactive​ chitosan-based actuator. Carbohydr Polym 181:404–411. https://doi.org/10.1016/j.carbpol.2017.08.113

    Article  CAS  PubMed  Google Scholar 

  49. Lee JW, Kim JH, Goo NS, Lee JY, Yoo YT (2010) Ion-conductive poly(vinyl alcohol)-based IPMCs. J Bionic Eng 7:19–28. https://doi.org/10.1016/S1672-6529(09)60194-3

    Article  Google Scholar 

  50. Vunder V, Hamburg E, Johanson U, Punning A, Aabloo A (2016) Effect of ambient humidity on ionic electroactive polymer actuators. Smart Mater Struct https://doi.org/10.1088/0964-1726/25/5/055038

    Article  Google Scholar 

  51. Wang HS, Cho J, Song DS, Jang JH, Jho JY, Park JH (2017) High-performance electroactive polymer actuators based on ultrathick ionic polymer-metal composites with nanodispersed metal electrodes. ACS Appl Mater Interfaces 9:21998–22005. https://doi.org/10.1021/acsami.7b04779

    Article  CAS  PubMed  Google Scholar 

  52. Liu S, Lin M, Zhang Q (2008) Extensional ionomeric polymer conductor composite actuators with ionic liquids. Electroact Polym Actuators Devices 2008 6927:69270H. https://doi.org/10.1117/12.787597

    Article  CAS  Google Scholar 

  53. Safari M, Naji L, Baker RT, Taromi FA, Sun Z, Zhao G, Guo H, Xu Y (2015) The enhancement effect of lithium ions on actuation performance of ionic liquid-based IPMC soft actuators. Polym (Guildf) 76:140–149. https://doi.org/10.1016/j.polymer.2015.09.004

    Article  CAS  Google Scholar 

  54. Hong W, Almomani A, Montazami R (2014) Influence of ionic liquid concentration on the electromechanical performance of ionic electroactive polymer actuators. Org Electron Physics Mater Appl https://doi.org/10.1016/j.orgel.2014.08.036

    Article  Google Scholar 

  55. He Q, Vokoun D, Stalbaum T, Kim KJ, Fedorchenko AI, Zhou X, Yu M, Dai Z (2019) Mechanoelectric transduction of ionic polymer-graphene composite sensor with ionic liquid as electrolyte. Sens Actuators Phys 286:68–77. https://doi.org/10.1016/j.sna.2018.12.014

    Article  CAS  Google Scholar 

  56. Bian C, Zhu Z, Bai W, Chen H, Li Y (2020) Fast actuation properties of several typical IL-based ionic electro-active polymers under high impulse voltage. Smart Mater Struct https://doi.org/10.1088/1361-665X/ab6882

    Article  Google Scholar 

  57. Da Trindade LG, Zanchet L, Padilha JC, Celso F, Mikhailenko SD, Becker MR, De Souza MO, De Souza RF (2014) Influence of ionic liquids on the properties of sulfonated polymer membranes. Mater Chem Phys 148:648–654. https://doi.org/10.1016/j.matchemphys.2014.08.030

    Article  CAS  Google Scholar 

  58. Fulmer GR, Miller AJM, Sherden NH, Gottlieb HE, Nudelman A, Stoltz BM, Bercaw JE, Goldberg KI (2010) NMR chemical shifts of trace impurities: common laboratory solvents, organics, and gases in deuterated solvents relevant to the organometallic chemist. Organometallics 29:2176–2179. https://doi.org/10.1021/om100106e

    Article  CAS  Google Scholar 

  59. Lian C, Liu K, Van Aken KL, Gogotsi Y, Wesolowski DJ, Liu HL, Jiang DE, Wu JZ (2016) Enhancing the capacitive performance of electric double-layer capacitors with ionic liquid mixtures. ACS Energy Lett 1:21–26. https://doi.org/10.1021/acsenergylett.6b00010

    Article  CAS  Google Scholar 

  60. Drozdov AD (2016) Modeling the response of polymer–ionic liquid electromechanical actuators. Acta Mech 227:437–465. https://doi.org/10.1007/s00707-015-1471-7

    Article  Google Scholar 

Download references

Acknowledgements

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001. We would like to thank the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) for the scholarships, processes: 88887.612843/2021-00, 88887.569936/2020-00, 23038.021524/2016-88. The authors would also like to thank the CNPq and Fundação de Amparo à Pesquisa do Estado de São Paulo – Brasil (FAPESP) (process #2018/07001-6, #2018/10843-9, #2018/09761-8 and #2020/02696-6) funding agencies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. A. Tozzi.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tozzi, K.A., Gonçalves, R., Barbosa, R. et al. Improving electrochemical stability and electromechanical efficiency of ipmcs: tuning ionic liquid concentration. J Appl Electrochem 53, 241–255 (2023). https://doi.org/10.1007/s10800-022-01776-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-022-01776-w

Keywords

Navigation