Skip to main content
Log in

SYNTHESIS, CRYSTAL STRUCTURE, AND PROPERTIES OF HETEROLEPTIC Cu(I) DITHIOCARBAMATE COMPLEX CONTAINING DIPHENYL PHOSPHINOFERROCENE (dppf)

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

A new copper(I) heteroleptic pyridyl functionalized dithiocarbamate(dtc) complex, [Cu(L)2dppf]·2H2O·MeOH, (1) (where L = N-benzyl-N-methylpyridyldtc and dppf = = diphenyl phosphinoferrocene), has been synthesized from the reaction of [Cu2(μ-Br)2(k2-P,P-dppf)2] and dithiocarbamate ligand (L). The synthesized complex has been characterized by elemental analysis, spectroscopy techniques (IR, 1H, 13C, 31P NMR, and UV-Vis), and single-crystal X-ray crystallography. In this heteroleptic complex, the Cu atom forms distorted tetrahedral coordination geometry. The supramolecular architecture in the complex has been sustained in the solid phase by, C–H⋯O and C–H⋯π (chelate = CuS2C) interactions. The emission spectrum of the complex has been studied in DCM solution. The charge-transfer excited state is quenched due to intramolecular energy transfer from the {Cu(S,S)(P,P)} moiety to the ferrocene therefore dppf-based complex shows no detectable emission at room temperature. This complex is weakly conducting and exhibit semiconductor behavior at room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

REFERENCES

  1. T. J. Kealy and P. L. Pauson. Nature, 1951, 168, 1039. https://doi.org/10.1038/1681039b0

    Article  CAS  Google Scholar 

  2. L. R. Butler. Polyhedron, 1992, 11, 3117. https://doi.org/10.1016/S0277-5387(00)83651-7

    Article  CAS  Google Scholar 

  3. A. Togni and T. Hayashi. Ferrocenes: Homogeneous Catalysis, Organic Synthesis, Materials Science. VCH Publishers, 1995. https://doi.org/10.1002/9783527615599

    Book  Google Scholar 

  4. C. Valério, J. L. Fillaut, J. Ruiz, J. Guittard, J. C. Blais, and D. Astruc. J. Am. Chem. Soc., 1997, 119, 2588. https://doi.org/10.1021/ja964127t

    Article  Google Scholar 

  5. P. D. Beer, P. A. Gale, and G. Z. Chen. J. Chem. Soc., Dalton Trans., 1999, 1897. https://doi.org/10.1039/a901462d

    Article  Google Scholar 

  6. J. D. Carr, S. J. Coles, W. W. Hassan, M. B. Hursthouse, K. M. A. Malik, and H. R. Tucker. J. Chem. Soc., Dalton Trans., 1999, 57. https://doi.org/10.1039/a807453d

    Article  Google Scholar 

  7. D. R. van Staveren and N. Metzler-Nolte. Chem. Rev., 2004, 104, 5931. https://doi.org/10.1021/cr0101510

    Article  CAS  PubMed  Google Scholar 

  8. G. Jaouen, S. Top, A. Vessières, and G. Jaouen. Bioorganometallics: Biomolecules, Labeling, Medicine. Germany: Wiley-VCH, 2006. https://doi.org/10.1002/3527607692

    Book  Google Scholar 

  9. B. Lal, A. Badshah, A. A. Altaf, N. Khan, and S. Ullah. Appl. Organomet. Chem., 2011, 25, 843-855. https://doi.org/10.1002/aoc.1843

    Article  CAS  Google Scholar 

  10. A. A. Altaf, M. Hamayun, B. Lal, M. N. Tahir, A.A. Holder, A. Badshah, and D. C. Crans. Dalton Trans., 2018, 47, 11769. https://doi.org/10.1039/C8DT01726C

    Article  CAS  PubMed  Google Scholar 

  11. D. Coucouvanis. Prog. Inorg. Chem., 1970, 11, 233.

  12. D. Coucouvanis. Prog. Inorg. Chem., 1979, 26, 301.

  13. S. R. Rao. Xanthates and Related Compounds. New York: Marcel Dekker, 1971.

  14. G. Hogarth. Mini-Rev. Med. Chem., 2012, 12, 1202. https://doi.org/10.2174/138955712802762095

    Article  CAS  Google Scholar 

  15. P. J. Heard. Prog. Inorg. Chem., 2005, 53, 268.

  16. E. R. T. Tiekink. CrystEngComm, 2003, 5, 101. https://doi.org/10.1039/b301318a

    Article  CAS  Google Scholar 

  17. E. R. T. Tiekink and G. Winter. Rev. Inorg. Chem., 1992, 12, 183. https://doi.org/10.1515/REVIC.1992.12.3-4.183

    Article  CAS  Google Scholar 

  18. J. Cookson and P. D. Beer. Dalton Trans., 2007, 1459. https://doi.org/10.1039/b618088d

    Article  PubMed  Google Scholar 

  19. E. J. Mensforth, M. R. Hill, and S. R. Batten. Inorg. Chim. Acta, 2013, 403, 9. https://doi.org/10.1016/j.ica.2013.02.019

    Article  CAS  Google Scholar 

  20. S. Nolwazi and P. A. Ajibade. J. Sulfur Chem., 2021, 42, 167-179. https://doi.org/10.1080/17415993.2020.1822838

    Article  CAS  Google Scholar 

  21. G. Hogarth. Prog. Inorg. Chem., 2005, 53, 71.

  22. J. D. E. T. Wilton-Ely, D. Solanki, and G. Hogarth. Eur. J. Inorg. Chem., 2005, 4027. https://doi.org/10.1002/ejic.200500430

    Article  CAS  Google Scholar 

  23. J. D. E. T. Wilton-Ely, D. Solanki, E. R. Knight, K. B. Holt, A. L. Thompson, and G. Hogarths. Inorg. Chem., 2008, 47, 9642. https://doi.org/10.1021/ic800398b

    Article  CAS  PubMed  Google Scholar 

  24. M. J. Macgregor, G. Hogarth, A. L. Thompson, and J. D. E. T. Wilton-Ely. Organometallics, 2009, 28, 197. https://doi.org/10.1021/om800686f

    Article  CAS  Google Scholar 

  25. V. Singh, R. Chauhan, A. N. Gupta, V. Kumar, M. G. B. Drew, L. Bahadur, and N. Singh. Dalton Trans., 2014, 43, 4752. https://doi.org/10.1039/c3dt52142g

    Article  CAS  PubMed  Google Scholar 

  26. A. Kumar, R. Chauhan, K. C. Molloy, G. Kociok-Kçhn, L. Bahadur, and N. Singh. Chem. Eur. J., 2010, 16, 4307. https://doi.org/10.1002/chem.200903367

    Article  CAS  PubMed  Google Scholar 

  27. Neetu, K. K. Manar, P. Srivastava, and N. Singh. Sol. Energy, 2018, 176, 312. https://doi.org/10.1016/j.solener.2018.10.033

    Article  CAS  Google Scholar 

  28. G. Rajput, V. Singh, S. K. Singh, L. B. Prasad, M. G. B. Drew, and N. Singh. Eur. J. Inorg. Chem., 2012, 24, 3885. https://doi.org/10.1002/ejic.201200307

    Article  CAS  Google Scholar 

  29. K. K. Manar, C. L. Yadav, N. Tiwari, R. K. Singh, A. Kumar, M. G. B. Drew, and N. Singh. CrystEngComm, 2017, 19, 2660. https://doi.org/10.1039/C7CE00211D

    Article  CAS  Google Scholar 

  30. V. Kumar, V. Singh, A. N. Gupta, S. K. Singh, M. G. Drew, and N. Singh. Polyhedron, 2015, 89, 304-312. https://doi.org/10.1016/j.poly.2015.01.020

    Article  CAS  Google Scholar 

  31. V. Kumar, V. Singh, A. N. Gupta, K. K. Manar, M. G. B. Drew, and N. Singh. CrystEngComm, 2014, 16, 6765. https://doi.org/10.1039/c4ce00510d

    Article  CAS  Google Scholar 

  32. V. Kumar, V. Singh, A. N. Gupta, M. G. B. Drew, and N. Singh. Dalton Trans., 2015, 44, 1716. https://doi.org/10.1039/C4DT03032J

    Article  CAS  PubMed  Google Scholar 

  33. Anamika, A. K. Agrahari, K. K. Manar, C. L. Yadav, V. K. Tiwari, M. G. B. Drew, and N. Singh. New J. Chem., 2019, 43, 8939. https://doi.org/10.1039/C9NJ01551E

    Article  CAS  Google Scholar 

  34. G. Rajput, M. K. Yadav, M. G. B. Drew, and N. Singh. Inorg. Chem., 2015, 54, 2572. https://doi.org/10.1021/ic502688h

    Article  CAS  PubMed  Google Scholar 

  35. E. R. T. Tiekink. Crystals, 2021, 11(3), 286. https://doi.org/10.3390/cryst11030286

    Article  CAS  Google Scholar 

  36. J. Díez, M. P. Gamasa, J. Gimeno, M. Lanfranchi, and A. Triripicchio. J. Organomet. Chem., 2001, 637, 677. https://doi.org/10.1016/S0022-328X(01)00963-9

    Article  Google Scholar 

  37. CrysAlis RED program. Abingdon, U.K.: Oxford Diffraction, 2008.

  38. G. M. Sheldrick. Acta Crystallogr., Sect. A, 2008, 64, 112. https://doi.org/10.1107/S0108767307043930

    Article  Google Scholar 

  39. M. N. Burnett and C. K. Johnson. ORTEP-III, Oak Ridge Thermal Ellipsoid Plot Program for Crystal Structure Illustrations, Report ORNL-6895. Oak Ridge, TN, USA: Oak Ridge National Laboratory, 1996. https://doi.org/10.2172/369685

  40. N. Armaroli, G. Accorsi, G. Bergamini, P. Ceroni, M. Holler, O. Moudam, C. Duhayon, B. Delavaux-Nicot,and J.-F. Nierengarten. Inorg. Chim. Acta, 2007, 360, 1032. https://doi.org/10.1016/j.ica.2006.07.085

    Article  CAS  Google Scholar 

  41. D. J. Young, S. W. Chien, and T. S. A. Hor. Dalton Trans., 2012, 41, 12655. https://doi.org/10.1039/c2dt31271a

    Article  CAS  PubMed  Google Scholar 

  42. A. Listorti, G. Accorsi, Y. Rio, N. Armaroli, O. Moudam, A. Gégout, B. Delavaux-Nicot, M. Holler,and J.-F. Nierengarten. Inorg. Chem., 2008, 47, 6254. https://doi.org/10.1021/ic800315e

    Article  CAS  PubMed  Google Scholar 

  43. T. Okubo, H. Anma, N. Tanaka, K. Himoto, S. Seki, A. Saeki, M. Maekawa, and T. Kuroda-Sowa. Chem. Commun., 2013, 49(39), 4316. https://doi.org/10.1039/C2CC37137E

    Article  CAS  Google Scholar 

  44. E. R. T. Tiekink and J. Zukerman-Schpector. Chem. Commun., 2011, 47, 6623-6625. https://doi.org/10.1039/c1cc11173f

    Article  CAS  Google Scholar 

  45. C. I. Yeo, S. N. A. Halim, S. W. Ng, S. L. Tan, J. Z. Schpector, M. A. B. Ferreira, and E. R. T. Tiekink. Chem. Commun., 2014, 50, 5984. https://doi.org/10.1039/C4CC02040E

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Kumar.

Ethics declarations

The authors declare that they have no conflict of interests.

Additional information

Russian Text © The Author(s), 2021, published in Zhurnal Strukturnoi Khimii, 2021, Vol. 62, No. 11, pp. 1835-1843.https://doi.org/10.26902/JSC_id82655

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, V., Singh, S. SYNTHESIS, CRYSTAL STRUCTURE, AND PROPERTIES OF HETEROLEPTIC Cu(I) DITHIOCARBAMATE COMPLEX CONTAINING DIPHENYL PHOSPHINOFERROCENE (dppf). J Struct Chem 62, 1723–1731 (2021). https://doi.org/10.1134/S0022476621110081

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476621110081

Keywords

Navigation