Skip to main content
Log in

SYNTHESIS, CRYSTAL STRUCTURES, AND UREASE INHIBITORY ACTIVITY OF SCHIFF BASE COPPER AND NICKEL COMPLEXES

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Urease inhibitors can inhibit the decomposition rate of urea, and decrease the air pollution caused by ammonia. In this paper, three new copper(II) and nickel(II) complexes [Cu2L21,1-N3)2] (1), [Cu(HL)2]Br2 (2), and [Ni3L2(DMF)22–η11-CH3COO)21,1-N3)2] (3), where L = 5-bromo-2-(((2-isopropylamino) ethyl)imino)methyl)phenolate, HL = 5-bromo-2-(((2-isopropylammonio)ethyl)imino)methyl)phenolate are synthesized and characterized. The complexes are characterized by elemental analyses, IR, UV-Vis spectra, molar conductivity, and single crystal X-ray diffraction. The X-ray analysis indicates that Cu atoms in complexes 1 and 2 are in square pyramidal and square planar coordination, respectively. The Ni atoms in complex 3 are in octahedral coordination. The molecules of the complexes are linked through hydrogen bonds and π⋯π interactions. The inhibitory effects of the complexes on jack bean urease are studied, which show that the copper complexes have a strong inhibitory effect on urease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

REFERENCES

  1. L. Casali, L. Mazzei, O. Shemchuk, L. Sharma, K. Honer, F. Grepioni, S. Ciurli, D. Braga, and J. Baltrusaitis. ACS Sustainable Chem. Eng., 2019, 7, 2852-2859. https://doi.org/10.1021/acssuschemeng.8b06293

    Article  CAS  Google Scholar 

  2. P. A. Karplus, M. A. Pearson, and R. P. Hausinger. Acc. Chem. Res., 1997, 30, 330-337. https://doi.org/10.1021/ar960022j

    Article  CAS  Google Scholar 

  3. B. Bano, Kanwal, K. M. Khan, A. Lodhi, U. Salar, F. Begum, M. Ali, M. Taha, and S. Perveen. Bioorg. Chem., 2018, 80, 129-144. https://doi.org/10.1016/j.bioorg.2018.06.007

    Article  CAS  PubMed  Google Scholar 

  4. P. Y. Oikawa, C. Ge, J. Wang, J. R. Eberwein, L. L. Liang, L. A. Allsman, D. A. Grantz, and G. D. Jenerette. Nat. Commun., 2015, 6, 8753. https://doi.org/10.1038/ncomms9753

    Article  CAS  PubMed  Google Scholar 

  5. D. Coskun, D. T. Britto, W. Shi, and H. J. Kronzucker. Nat. Plants, 2017, 3, 17074. https://doi.org/10.1038/nplants.2017.74

    Article  CAS  PubMed  Google Scholar 

  6. S. V. Krupa. Environ. Pollut., 2003, 124, 179-221. https://doi.org/10.1016/S0269-7491(02)00434-7

    Article  CAS  PubMed  Google Scholar 

  7. J. L. Hand, B. A. Schichtel, M. Pitchford, W. C. Malm, and N. H. Frank. J. Geophys. Res. Atmos., 2012, 117, D05209. https://doi.org/10.1029/2011JD017122

    Article  Google Scholar 

  8. J. N. Galloway, F. J. Dentener, D. G. Capone, E. W. Boyer, R. W. Howarth, S. P. Seitzinger, G. P. Asner,C. C. Cleveland, P. A. Green, E. A. Holland, D. M. Karl, A. F. Michaels, J. H. Porter, A. R. Townsend,and C. J. Vorosmarty. Biogeochemistry, 2004, 70, 153-226. https://doi.org/10.1007/s10533-004-0370-0

    Article  CAS  Google Scholar 

  9. Z.-P. Xiao, Z.-Y. Peng, J.-J. Dong, J. He, H. Ouyang, Y.-T. Peng, C.-L. Lu, W.-Q. Lin, J.-X. Wang, Y.-P. Xiang,and H.-L. Zhu. Eur. J. Med. Chem., 2013, 63, 685-695. https://doi.org/10.1016/j.ejmech.2013.03.016

    Article  CAS  PubMed  Google Scholar 

  10. A. Hameed, K. M. Khan, S. T. Zehra, R. Ahmed, Z. Shafiq, S. M. Bakht, M. Yaqub, M. Hussain, A. de la Vega de Leon, N. Furtmann, J. Bajorath, H. A. Shad, M. N. Tahir, and J. Iqbal. Bioorg. Chem., 2015, 61, 51-57. https://doi.org/10.1016/j.bioorg.2015.06.004

    Article  CAS  PubMed  Google Scholar 

  11. F. Iftikhar, Y. Ali, F. A. Kiani, S. F. Hassan, T. Fatima, A. Khan, B. Niaz, A. Hassan, F. L. Ansari, and U. Rashid. Bioorg. Chem., 2017, 74, 53-65. https://doi.org/10.1016/j.bioorg.2017.07.003

    Article  CAS  PubMed  Google Scholar 

  12. W.-W. Ni, Q. Liu, S.-Z. Ren, W.-Y. Li, L.-L. Yi, H. Jing, L.-X. Sheng, Q. Wan, P.-F. Zhong, H.-L. Fang, H. Ouyang,Z.-P. Xiao, and H.-L. Zhu. Bioorg. Med. Chem., 2018, 26, 4145-4152. https://doi.org/10.1016/j.bmc.2018.07.003

    Article  CAS  Google Scholar 

  13. Q. Liu, W.-K. Shi, S.-Z. Ren, W.-W. Ni, W.-Y. Li, H.-M. Chen, P. Liu, J. Yuan, X.-S. He, J.-J. Liu, P. Cao, P.-Z. Yang, Z.-P. Xiao, and H.-L. Zhu. Eur. J. Med. Chem., 2018, 156, 126-136. https://doi.org/10.1016/j.ejmech.2018.06.065

    Article  CAS  PubMed  Google Scholar 

  14. W.-W. Ni, H.-L. Fang, Y.-X. Ye, W.-Y. Li, C.-P. Yuan, D.-D. Li, S.-J. Mao, S.-E. Li, Q.-H. Zhu, H. Ouyang, Z.-P. Xiao, and H.-L. Zhu. Future Med. Chem., 2020, 12, 1633-1645. https://doi.org/10.4155/fmc-2020-0048

    Article  CAS  PubMed  Google Scholar 

  15. W.-K. Shi, R.-C. Deng, P.-F. Wang, Q.-Q. Yue, Q. Liu, K.-L. Ding, M.-H. Yang, H.-Y. Zhang, S.-H. Gong, M. Deng, W.-R. Liu, Q.-J. Feng, Z.-P. Xiao, and H.-L. Zhu. Bioorg. Med. Chem., 2016, 24, 4519-4527. https://doi.org/10.1016/j.bmc.2016.07.052

    Article  CAS  Google Scholar 

  16. Z.-P. Xiao, W.-K. Shi, P.-F. Wang, W. Wei, X.-T. Zeng, J.-R. Zhang, N. Zhu, M. Peng, B. Peng, X.-Y. Lin, H. Ouyang,X.-C. Peng, G.-C. Wang, and H.-L. Zhu. Bioorg. Med. Chem., 2015, 23, 4508-4513. https://doi.org/10.1016/j.bmc.2015.06.014

    Article  CAS  Google Scholar 

  17. Z.-P. Xiao, Z.-Y. Peng, J.-J. Dong, R.-C. Deng, X.-D. Wang, H. Ouyang, P. Yang, J. He, Y.-F. Wang, M. Zhu,X.-C. Peng, W.-X. Peng, and H.-L. Zhu. Eur. J. Med. Chem., 2013, 68, 212-221. https://doi.org/10.1016/j.ejmech.2013.07.047

    Article  CAS  PubMed  Google Scholar 

  18. M. K. Rauf, S. Yaseen, A. Badshah, S. Zaib, R. Arshad, Imtiaz-ud-Din, M. N. Tahir, and J. Iqbal. J. Biol. Inorg. Chem., 2015, 20, 541-554. https://doi.org/10.1007/s00775-015-1239-5

    Article  CAS  PubMed  Google Scholar 

  19. X. Dong, Y. Li, Z. Li, Y. Cui, and H. Zhu. J. Inorg. Biochem., 2012, 108, 22-29. https://doi.org/10.1016/j.jinorgbio.2011.12.006

    Article  CAS  PubMed  Google Scholar 

  20. Y. Gou, M. Yu, Y. Li, Y. Peng, and W. Chen. Inorg. Chim. Acta, 2013, 404, 224-229. https://doi.org/10.1016/j.ica.2013.03.045

    Article  CAS  Google Scholar 

  21. S. Najm, H. Naureen, K. Sultana, F. Anwar, M. M. Khan, H. Nadeem, and M. Saeed. ACS Omega, 2021, 6, 7719-7730. https://doi.org/10.1021/acsomega.1c00027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. T. Chandrasekar, A. Arunadevi, and N. Raman. J. Coord. Chem., 2021, 74, 804-822. https://doi.org/10.1080/00958972.2020.1870967

    Article  CAS  Google Scholar 

  23. A. Arunadevi and N. Raman. J. Coord. Chem., 2020, 73, 2095-2116. https://doi.org/10.1080/00958972.2020.1824293

    Article  CAS  Google Scholar 

  24. C. J. Dhanaraj and S. S. S. Raj. Inorg. Chem. Commun., 2020, 119, 108087. https://doi.org/10.1016/j.inoche.2020.108087

    Article  CAS  Google Scholar 

  25. H. Zhu, Z.-Z. Wang, B. Qi, T. Huang, and H.-L. Zhu. J. Coord. Chem., 2013, 66, 2980-2991. https://doi.org/10.1080/00958972.2013.821198

    Article  CAS  Google Scholar 

  26. L. Habala, A. Roller, M. Matuska, J. Valentova, A. Rompel, and F. Devinsky. Inorg. Chim. Acta, 2014, 421, 423-426. https://doi.org/10.1016/j.ica.2014.06.035

    Article  CAS  Google Scholar 

  27. Y.-G. Li, D.-H. Shi, H.-L. Zhu, H. Yan, and S. W. Ng. Inorg. Chim. Acta, 2007, 360, 2881-2889. https://doi.org/10.1016/j.ica.2007.02.019

    Article  CAS  Google Scholar 

  28. G. M. Sheldrick. SAINT (version 6.02), SADABS (version 2.03). Madison, WI, USA: Bruker AXS, 2002.

  29. G. M. Sheldrick. Acta Crystallogr., Sect. C, 2015, 71, 3-8. https://doi.org/10.1107/S2053229614024218

    Article  Google Scholar 

  30. G. M. Sheldrick. SADABS Program for Empirical Absorption Correction of Area Detector. Gottingen, Germany: University of Gottingen, 1996.

  31. M. W. Weatherburn. Anal. Chem., 1967, 39, 971-974. https://doi.org/10.1021/ac60252a045

    Article  CAS  Google Scholar 

  32. W. J. Geary. Coord. Chem. Rev., 1971, 7, 81-122. https://doi.org/10.1016/S0010-8545(00)80009-0

    Article  CAS  Google Scholar 

  33. K. R. Surati and B. T. Thaker. Spectrochim. Acta, Part A, 2010, 75, 235-242. https://doi.org/10.1016/j.saa.2009.10.018

    Article  CAS  Google Scholar 

  34. B. Sarkar, M. G. B. Drew, M. Estrader, C. Diaz, and A. Ghosh. Polyhedron, 2008, 27, 2625-2633. https://doi.org/10.1016/j.poly.2008.05.004

    Article  CAS  Google Scholar 

  35. U. Kumar, J. Thomas, and N. Thirupathi. Inorg. Chem., 2010, 49, 62-72. https://doi.org/10.1021/ic901100z

    Article  CAS  Google Scholar 

  36. S. S. Massoud and F. A. Mautner. Inorg. Chim. Acta, 2005, 358, 3334-3340. https://doi.org/10.1016/j.ica.2005.05.007

    Article  CAS  Google Scholar 

  37. A. Ray, S. Banerjee, R. J. Butcher, C. Desplanches, and S. Mitra. Polyhedron, 2008, 27, 2409-2415. https://doi.org/10.1016/j.poly.2008.04.018

    Article  CAS  Google Scholar 

  38. Y.-M. Zhou, X.-R. Ye, F.-B. Xin, and X.-Q. Xin. Transition Met. Chem., 1999, 24, 118-120. https://doi.org/10.1023/A:1006989707001

    Article  CAS  Google Scholar 

  39. L. Pogany, J. Moncol, M. Gal, I. Salitros, and R. Boca. Inorg. Chim. Acta, 2017, 462, 23-29. https://doi.org/10.1016/j.ica.2017.03.001

    Article  CAS  Google Scholar 

  40. A. Jayamani, M. Sethupathi, S. O. Ojwach, and N. Sengottuvelan. Inorg. Chem. Commun., 2017, 84, 144-149. https://doi.org/10.1016/j.inoche.2017.08.013

    Article  CAS  Google Scholar 

  41. P. K. Bhaumik, K. Harms, and S. Chattopadhyay. Polyhedron, 2014, 68, 346-356. https://doi.org/10.1016/j.poly.2013.10.031

    Article  CAS  Google Scholar 

  42. J. Wang, Y. Luo, Y. Zhang, Y. Chen, F. Gao, Y. Ma, D. Xian, and Z. You. J. Coord. Chem., 2021, 74, 1028-1038. https://doi.org/10.1080/00958972.2020.1861603

    Article  CAS  Google Scholar 

  43. M. Duan, Y. Li, L. Xu, H. Yang, F. Luo, Y. Guan, B. Zhang, C. Jing, and Z. You. Inorg. Chem. Commun., 2019, 100, 27-31. https://doi.org/10.1016/j.inoche.2018.12.009

    Article  CAS  Google Scholar 

  44. Z. You, H. Yu, Z. Li, W. Zhai, Y. Jiang, A. Li, S. Guo, K. Li, C. Lv, and C. Zhang. Inorg. Chim. Acta, 2018, 480, 120-126. https://doi.org/10.1016/j.ica.2018.05.020

    Article  CAS  Google Scholar 

  45. L. Pan, C. Wang, K. Yan, K. Zhao, G. Sheng, H. Zhu, X. Zhao, D. Qu, F. Niu, and Z. You. J. Inorg. Biochem., 2016, 159, 22-28. https://doi.org/10.1016/j.jinorgbio.2016.02.017

    Article  CAS  PubMed  Google Scholar 

  46. Y. Luo, J. Wang, B. Zhang, Y. Guan, T. Yang, X. Li, L. Xu, J. Wang, and Z. You. J. Coord. Chem., 2020, 73, 1765-1777. https://doi.org/10.1080/00958972.2020.1795645

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Wang.

Ethics declarations

The author declares that he has no conflict of interests.

Additional information

Russian Text © The Author(s), 2021, published in Zhurnal Strukturnoi Khimii, 2021, Vol. 62, No. 11, pp. 1780-1790.https://doi.org/10.26902/JSC_id81674

Supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y. SYNTHESIS, CRYSTAL STRUCTURES, AND UREASE INHIBITORY ACTIVITY OF SCHIFF BASE COPPER AND NICKEL COMPLEXES. J Struct Chem 62, 1667–1677 (2021). https://doi.org/10.1134/S0022476621110020

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476621110020

Keywords

Navigation