Skip to main content
Log in

PARAMETRIZATION OF THE TORSION POTENTIAL IN ALL-ATOM MODELS OF HYDROCARBON MOLECULES USING A SIMPLIFIED EXPRESSION FOR THE DEFORMATION ENERGY OF VALENCE BONDS AND ANGLES

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

We present a system of parameters to construct torsion potentials in all-atom models of hydrocarbons with a simplified expression for the deformation energy of valence bonds and angles. Structural and energy characteristics of molecules of various hydrocarbons in the gas phase (one molecule in a vacuum) and in the liquid phase under atmospheric pressure and room temperature are studied by the Monte Carlo simulation. The data obtained with this approach completely agree with those obtained by other authors experimentally or using quantum chemical calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. * The fragments and fragmentation of the molecules are described in detail in [1].

REFERENCES

  1. A. V. Teplukhin. J. Struct. Chem., 2021, 62(1), 70. https://doi.org/10.1134/S002247662101008X

    Article  CAS  Google Scholar 

  2. A. V. Teplukhin. Polym. Sci., Ser. C, 2013, 55, 103. https://doi.org/10.1134/S1811238213050044

    Article  CAS  Google Scholar 

  3. N. A. Metropolis and S. Ulam. J. Am. Stat. Assoc., 1949, 44, 335. https://doi.org/10.1080/01621459.1949.10483310

    Article  CAS  PubMed  Google Scholar 

  4. N. A. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, and A. H. Teller. J. Chem. Phys., 1953, 21, 1087. https://doi.org/10.1063/1.1699114

    Article  CAS  Google Scholar 

  5. W. L. Jorgensen, D. S. Maxwell, and J. Tirado-Rives. J. Am. Chem. Soc., 1996, 118, 11225. https://doi.org/10.1021/ja9621760

    Article  CAS  Google Scholar 

  6. M. P. Allen and D. J. Tildesley. Computer Simulation of Liquids. N.Y.: Oxford University Press, 1987.

  7. N. Moazzen-Ahmadi, E. Kelly, J. Schroderus, and V.-M. Horneman. J. Mol. Spectrosc., 2001, 209, 228. https://doi.org/10.1006/jmsp.2001.8427

    Article  CAS  Google Scholar 

  8. G. Bestmann, W. Lalowski, and H. Dreizler. Z. Naturforsch., A, 1985, 40, 271. https://doi.org/10.1515/zna-1985-0311

    Article  Google Scholar 

  9. V. V. Ilyushin, Z. Kisiel, L. Pszczółkowski, H. Mäder, and J. T. Hougen. J. Mol. Spectrosc., 2010, 259, 26. https://doi.org/10.1016/j.jms.2009.10.005

    Article  CAS  Google Scholar 

  10. J. C. Pearson, K. V. L. N. Sastry, E. Herbst, and F. C. De Lucia. J. Mol. Spectrosc., 1994, 166, 120. https://doi.org/10.1006/jmsp.1994.1177

    Article  CAS  Google Scholar 

  11. H. S. Gutowsky and T. C. Germann. J. Mol. Spectrosc., 1991, 147, 91. https://doi.org/10.1016/0022-2852(91)90171-6

    Article  CAS  Google Scholar 

  12. S. L. Hsu, M. K. Kemp, J. M. Pochan, R. C. Benson, and W. H. Flygare. J. Chem. Phys., 1969, 50, 1482. https://doi.org/10.1063/1.1671221

    Article  CAS  Google Scholar 

  13. T. Liljefors and N. L. Allinger. J. Comput. Chem., 1985, 6, 478. https://doi.org/10.1002/jcc.540060517

    Article  CAS  Google Scholar 

  14. W. A. Herrebout, B. J. van der Veken, A. Wang, and J. R. Durig. J. Phys. Chem., 1995, 99, 578. https://doi.org/10.1021/j100002a020

    Article  CAS  Google Scholar 

  15. C. Latouche and V. Barone. J. Chem. Theory Comput., 2014, 10, 5586. https://doi.org/10.1021/ct500930b

    Article  CAS  PubMed  Google Scholar 

  16. L. S. Bartell and D. A. Kohl. J. Chem. Phys., 1963, 39, 3097. https://doi.org/10.1063/1.1734149

    Article  CAS  Google Scholar 

  17. N. L. Allinger, R. S. Grev, B. F. Yates, and H. F. Schaefer III. J. Am. Chem. Soc., 1990, 112, 114. https://doi.org/10.1021/ja00157a018

    Article  CAS  Google Scholar 

  18. M. P. Johansson and J. Olsen. J. Chem. Theory Comput., 2008, 4, 1460. https://doi.org/10.1021/ct800182e

    Article  CAS  PubMed  Google Scholar 

  19. O. Bastiansen and S. Samdal. J. Mol. Struct., 1985, 128, 115. https://doi.org/10.1016/0022-2860(85)85044-4

    Article  CAS  Google Scholar 

  20. W. Caminati, B. Vogelsanger, and A. Bauder. J. Mol. Spectrosc., 1988, 128, 384. https://doi.org/10.1016/0022-2852(88)90155-5

    Article  CAS  Google Scholar 

  21. P. Boopalachandran, N. Craig, P. Groner, and J. Laane. J. Phys. Chem. A, 2011, 115, 8920. https://doi.org/10.1021/jp2051596

    Article  CAS  PubMed  Google Scholar 

  22. Yu. N. Panchenko, V. I. Pupyshev, A. V. Abramenkov, M. Traetteberg, and S. J. Cyvin. J. Mol. Struct., 1985, 130, 355. https://doi.org/10.1016/0022-2860(85)87017-4

    Article  Google Scholar 

  23. Ch. W. Bock and Yu. N. Panchenko. J. Mol. Struct.: THEOCHEM, 1989, 187, 69. https://doi.org/10.1016/0166-1280(89)85150-4

    Article  Google Scholar 

  24. P. T. Brain, B. A. Smart, H. E. Robertson, M. J. Davis, D. W. H. Rankin, W. J. Henry, and I. Gosney. J. Org. Chem., 1997, 62, 2767. https://doi.org/10.1021/jo962091h

    Article  CAS  PubMed  Google Scholar 

  25. A. Miller and D. W. Scott. J. Chem. Phys., 1978, 68, 1317. https://doi.org/10.1063/1.435860

    Article  CAS  Google Scholar 

  26. T. Schaefer, L. Kruczynski, and W. Niemczura. Chem. Phys. Lett., 1976, 38, 498. https://doi.org/10.1016/0009-2614(76)80025-5

    Article  CAS  Google Scholar 

  27. P. Scharfenberg, B. Rozsondai, and I. Hargittai. Z. Naturforsch., 1980, 35A, 431. https://doi.org/10.1515/zna-1980-0414

    Article  Google Scholar 

  28. S. Kondo, E. Hirota, and Y. Morino. J. Mol. Spectrosc., 1968, 28, 471. https://doi.org/10.1016/0022-2852(68)90180-X

    Article  CAS  Google Scholar 

  29. S. Bell, B. R. Drew, G. A. Guirgis, and J. R. Durig. J. Mol. Struct., 2000, 553, 199. https://doi.org/10.1016/S0022-2860(00)00572-X

    Article  CAS  Google Scholar 

  30. A. Karpfen, C. H. Choi, and M. Kertesz. J. Phys. Chem. A, 1997, 101, 7426. https://doi.org/10.1021/jp971606l

    Article  CAS  Google Scholar 

  31. E. Gallinella and B. Cadioli. Vibr. Spectrosc., 1997, 13, 163. https://doi.org/10.1016/S0924-2031(96)00056-2

    Article  CAS  Google Scholar 

  32. M. Kunitski, S. Knippenberg, A. Dreuw, and B. Brutschy. Vibr. Spectrosc., 2011, 56, 13. https://doi.org/10.1016/j.vibspec.2010.07.006

    Article  CAS  Google Scholar 

  33. D. Van Hemelrijk, L. Van den Enden, H. J. Geise, H. L. Sellers, and L. Schäfer. J. Am. Chem. Soc., 1980, 102, 2189. https://doi.org/10.1021/ja00527a007

    Article  CAS  Google Scholar 

  34. E. Gallinella and B. Cadioli. J. Chem. Soc., Faraday Trans. 2, 1975, 71, 781. https://doi.org/10.1039/f29757100781

    Article  CAS  Google Scholar 

  35. J. H. M. Ter Brake. J. Mol. Struct., 1984, 118, 73. https://doi.org/10.1016/0022-2860(84)85181-9

    Article  CAS  Google Scholar 

  36. B. W. McClelland and K. Hedberg. J. Am. Chem. Soc., 1987, 109, 7304. https://doi.org/10.1021/ja00258a010

    Article  CAS  Google Scholar 

  37. E. Hirota, R. Watanabe, Y. Kawashima, T. Shigemune, J. Matsumoto, K. Murakami, A. Mizoguchi, H. Kanamori,M. Nakajima, Y. Endo, and Y. Sumiyoshi. J. Phys. Chem. A, 2013, 117, 9753. https://doi.org/10.1021/jp3124023

    Article  CAS  PubMed  Google Scholar 

  38. J. E. Kilpatrick, K. S. Pitzer, and R. Spitzer. J. Am. Chem. Soc., 1947, 69, 2483. https://doi.org/10.1021/ja01202a069

    Article  CAS  Google Scholar 

  39. D. Cremer and J. A. Pople. J. Am. Chem. Soc., 1975, 97, 1354. https://doi.org/10.1021/ja00839a011

    Article  CAS  Google Scholar 

  40. H. Essén and D. Cremer. Acta Crystallogr., Sect. B, 1984, 40, 418. https://doi.org/10.1107/S0108768184002391

    Article  Google Scholar 

  41. D. Cremer. Acta Crystallogr., Sect. B, 1984, 40, 498. https://doi.org/10.1107/S0108768184002548

    Article  Google Scholar 

  42. L. Paoloni, S. Rampino, and V. Barone. J. Chem. Theory Comput., 2019, 15, 4280. https://doi.org/10.1021/acs.jctc.9b00363

    Article  CAS  PubMed  Google Scholar 

  43. M. Sega, E. Autieri, and F. Pederiva. Mol. Phys., 2011, 109, 141. https://doi.org/10.1080/00268976.2010.522208

    Article  CAS  Google Scholar 

  44. T. H. Chao and J. Laane. J. Mol. Spectrosc., 1978, 70, 357. https://doi.org/10.1016/0022-2852(78)90173-X

    Article  CAS  Google Scholar 

  45. E. J. Ocola, L. E. Bauman, and J. Laane. J. Phys. Chem. A, 2011, 115, 6531. https://doi.org/10.1021/jp2032934

    Article  CAS  PubMed  Google Scholar 

  46. P. Kowalewski, H.-M. Frey, D. Infanger, and S. Leutwyler. J. Phys. Chem. A, 2015, 119, 11215. https://doi.org/10.1021/acs.jpca.5b07930

    Article  CAS  PubMed  Google Scholar 

  47. L. A. Carreira, G. J. Jiang, W. B. Person, and J.N. Willis Jr. J. Chem. Phys., 1972, 56, 1440. https://doi.org/10.1063/1.1677386

    Article  CAS  Google Scholar 

  48. L. E. Bauman and J. Laane. J. Phys. Chem., 1988, 92, 1040. https://doi.org/10.1021/j100316a011

    Article  CAS  Google Scholar 

  49. F. A. L. Anet and M. Z. Haq. J. Am. Chem. Soc., 1965, 87, 3147. https://doi.org/10.1021/ja01092a025

    Article  CAS  Google Scholar 

  50. L. H. Scharpen, J. E. Wollrab, and D. P. Ames. J. Chem. Phys., 1968, 49, 2368. https://doi.org/10.1063/1.1670409

    Article  CAS  Google Scholar 

  51. J. F. Chiang and S. H. Bauer. J. Am. Chem. Soc., 1969, 91, 1898. https://doi.org/10.1021/ja01036a004

    Article  CAS  Google Scholar 

  52. V. A. Naumov, V. G. Dashevskii, and N. M. Zaripov. J. Struct. Chem., 1971, 11, 736. https://doi.org/10.1007/BF00743372

    Article  Google Scholar 

  53. V. E. Rivera-Gaines, S. J. Leibowitz, and J. Laane. J. Am. Chem. Soc., 1991, 113, 9742. https://doi.org/10.1021/ja00026a004

    Article  CAS  Google Scholar 

  54. S. Saebø, F. R. Cordell, and J. E. Boggs. J. Mol. Struct.: THEOCHEM, 1983, 104, 221. https://doi.org/10.1016/0166-1280(83)80021-9

    Article  Google Scholar 

  55. F. A. L. Anet, D. I. Freedberg, J. W. Storer, and K. N. Houk. J. Am. Chem. Soc., 1992, 114, 10969. https://doi.org/10.1021/ja00053a048

    Article  CAS  Google Scholar 

  56. S. V. Shishkina, O. V. Shishkin, and J. Leszczynski. Chem. Phys. Lett., 2002, 354, 428. https://doi.org/10.1016/S0009-2614(02)00156-2

    Article  CAS  Google Scholar 

  57. D. Cremer and K. J. Szabo. In: Conformational Behavior of Six-Membered Rings: Analysis, Dynamics, and Stereoelectronic Effects / Ed. E. Juaristi. New York: Wiley-VCH, 1995, Ch. 3, 59.

  58. F. Wang and D. P. Landau. Phys. Rev. Lett., 2001, 86, 2050. https://doi.org/10.1103/PhysRevLett.86.2050

    Article  CAS  PubMed  Google Scholar 

  59. CRC Handbook of Chemistry and Physics. / Ed. D. R. Lide. Boca Raton: CRC Press/Taylor and Francis, 2010.

  60. C. L. Yaws. Thermophysical Properties of Chemicals and Hydrocarbons. Amsterdam: Elsevier, 2014.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Teplukhin.

Ethics declarations

The author declares that he has no conflict of interests.

Additional information

Russian Text © The Author(s), 2021, published in Zhurnal Strukturnoi Khimii, 2021, Vol. 62, No. 11, pp. 1765-1779.https://doi.org/10.26902/JSC_id81142

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teplukhin, A.V. PARAMETRIZATION OF THE TORSION POTENTIAL IN ALL-ATOM MODELS OF HYDROCARBON MOLECULES USING A SIMPLIFIED EXPRESSION FOR THE DEFORMATION ENERGY OF VALENCE BONDS AND ANGLES. J Struct Chem 62, 1653–1666 (2021). https://doi.org/10.1134/S0022476621110019

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476621110019

Keywords

Navigation