Skip to main content
Log in

STRUCTURE AND CATALYTIC PROPERTIES OF (ACETYLACETONATO-κ2O,O′)BIS(TRI(2-FURYL)PHOSPHINE) PALLADIUM(II) TETRAFLUOROBORATE

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Reaction of Pd(acac)2 with BF3·OEt2 in the presence of tri(2-furyl)phosphine in toluene yields complex [Pd(acac)(TFP)2]BF4 (I) (TFP is tri(2-furyl)phosphine) whose structure is determined by XRD. The crystal structure of I contains short H⋯F contacts. The energies of these contacts are studied using DFT quantum chemical methods. Coordination complex I in combination with BF3·OEt2 in appropriate concentrations and solvents demonstrates catalytic activity in the reaction of morpholine allylic alkylation characterized by the catalyst turnover number from 198 mol to 268 mol of 4-allylmorpholine per mole of palladium and an integral selectivity to the main product of 88-99%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Scheme 2

Similar content being viewed by others

REFERENCES

  1. A. I. Konovalov, I. S. Antipin, V. A. Burilov, T. I. Madzhidov, A. R. Kurbangalieva, A. V. Nemtarev, S. E. Solovieva, I. I. Stoikov, V. A. Mamedov, L. Ya. Zakharova, E. L. Gavrilova, O. G. Sinyashin, I. A. Balova, A. V. Vasilyev, I. G. Zenkevich, M. Yu. Krasavin, M. A. Kuznetsov, A. P. Molchanov, M. S. Novikov, V. A. Nikolaev, L. L. Rodina, A F. Khlebnikov, I. P. Beletskaya, S. Z. Vatsadze, S. P. Gromov, N. V. Zyk, A. T. Lebedev, D. A. Lemenovskii, V. S. Petrosyan, V. G. Nenaidenko, V. V. Negrebetskii, Yu. I. Baukov, T. A. Shmigol, A. A. Korlyukov, A. S. Tikhomirov, A. E. Shchekotikhin, V. F. Traven, L. G. Voskresenskii, F. I. Zubkov, O. A. Golubchikov, A. S. Semeikin, D. B. Berezin, P. A. Stuzhin, V. D. Filimonov, E. A. Krasnokutskaya, A. Yu. Fedorov, A. V. Nyuchev, V. Yu. Orlov, R. S. Begunov, A. I. Rusakov, A. V. Kolobov, E. R. Kofanov, O. V. Fedotova, A. Yu. Egorova, V. N. Charushin, O. N. Chupakhin, Yu. N. Klimochkin, V. A. Osyanin, A. N. Reznikov, A. S. Fisyuk, G. P. Sagitullina, A. V. Aksenov, N. A. Aksenov, M. K. Grachev, V. I. Maslennikova, M. P. Koroteev, A. K. Brel, S. V. Lisina, S. M. Medvedeva, Kh. S. Shikhaliev, G. A. Suboch, M. S. Tovbis, L. M. Mironovich, S. M. Ivanov, S. V. Kurbatov, M. E. Kletskii, O. N. Burov, K. I. Kobrakov, and D. N. Kuznetsov. Russ. J. Org. Chem., 2018, 54(2), 157-371, DOI: 10.1134/S107042801802001X.

    Article  CAS  Google Scholar 

  2. A. S. Burlov, S. A. Mashchenko, V. G. Vlasenko, M. A. Kiskin, S. A. Nikolaevskii, and E. V. Korshunova. Russ. J. Coord. Chem., 2019, 45(11), 782-787, DOI: 10.1134/S1070328419110010.

    Article  CAS  Google Scholar 

  3. I. A. Efimenko, A. V. Churakov, O. S. Erofeeva, N. A. Ivanova, and L. I. Demina. Russ. J. Coord. Chem., 2019, 45(9), 615-625, DOI: 10.1134/S1070328419090033.

    Article  CAS  Google Scholar 

  4. I. A. Efimenko, M. V. Filimonova, A. V. Churakov, N. A. Ivanova, O. S. Erofeeva, A. S. Samsonova, T. S. Podosinnikova, and A. S. Filimonov. Russ. J. Coord. Chem., 2020, 46(5), 339-349, DOI: 10.1134/S1070328420040028.

    Article  CAS  Google Scholar 

  5. E. Y. Tyulyaeva. Russ. J. Inorg. Chem., 2019, 64(14), 1775-1802, DOI: 10.1134/S0036023619140110.

    Article  CAS  Google Scholar 

  6. V. Farina, S. R. Baker, D. A. Benigni, and C. Sapino. Tetrahedron Lett., 1988, 29 (45), 5739-5742, DOI: 10.1016/S0040-4039(00)82177-2.

    Article  CAS  Google Scholar 

  7. V. Farina and B. Krishnan. J. Am. Chem. Soc., 1991, 113(25), 9585-9595, DOI: 10.1021/ja00025a025.

    Article  CAS  Google Scholar 

  8. N. G. Andersen and B. A. Keay. Chem. Rev., 2001, 101(4), 997-1030, DOI: 10.1021/cr000024o.

    Article  CAS  PubMed  Google Scholar 

  9. S. Otto, A. Roodt, and J. Smith. Inorg. Chim. Acta, 2000, 303(2), 295-299, DOI: 10.1016/S0020-1693(00)00041-4.

    Article  CAS  Google Scholar 

  10. V. Farina. Tri-2-furylphosphine. In: Encyclopedia of Reagents for Organic Synthesis. John Wiley & Sons: Chichester, UK, 2002, DOI: 10.1002/047084289X.rn00126.

  11. M. Ackermann, A. Pascariu, T. Höcher, H. U. Siehl, and S. Berger. J. Am. Chem. Soc., 2006, 128(26), 8434-8440, DOI: 10.1021/ja057085u.

    Article  CAS  PubMed  Google Scholar 

  12. M. K. Yilmaz, S. Ince, M. Keles, and B. Güzel. J. CO2 Util., 2020, 42(August), DOI: 10.1016/j.jcou.2020.101309.

    Article  CAS  Google Scholar 

  13. B. Yücel, L. Arve, and A. De Meijere. Tetrahedron, 2005, 61(48), 11355-11373, DOI: 10.1016/j.tet.2005.09.014.

    Article  CAS  Google Scholar 

  14. Y. Zhang, B. Z. Lu, G.-S. Li, S. Rodriguez, J. Tan, H.-X. Wei, J. Liu, F. Roschangar, F. Ding, W. Zhao, B. Qu, D. Reeves, N. Grinberg, H. Lee, G. Heckmann, O. Niemeier, M. Brenner, Y. Tsantrizos, P. L. Beaulieu, A. Hossain, N. Yee, V. Farina, and C. H. Senanayake. Org. Lett., 2014, 16(17), 4558-4561, DOI: 10.1021/ol5021114.

    Article  CAS  PubMed  Google Scholar 

  15. D. Bouyssi, V. Gerusz, and G. Balme. Eur. J. Org. Chem., 2002, 2002(15), 2445-2448, DOI: 10.1002/1099-0690(200208)2002:15<2445::AID-EJOC2445>3.0.CO;2-S.

    Article  Google Scholar 

  16. I. Pohorilets, M. P. Tracey, M. J. Leclaire, E. M. Moore, G. Lu, P. Liu, and K. Koide. ACS Catal., 2019, 9(12), 11720-11733, DOI: 10.1021/acscatal.9b03011.

    Article  CAS  Google Scholar 

  17. M. Nieberding, M. P. Tracey, and K. Koide. ACS Sensors, 2017, 2(11), 1737-1743, DOI: 10.1021/acssensors.7b00697.

    Article  CAS  PubMed  Google Scholar 

  18. K. Koide, M. P. Tracey, X. Bu, J. Jo, M. J. Williams, and C. J. Welch. Nat. Commun., 2016, 7, 2-8, DOI: 10.1038/ncomms10691.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. M. A. Miller, B. Askevold, H. Mikula, R. H. Kohler, D. Pirovich, and R. Weissleder. Nat. Commun., 2017, 8(May), 1-13, DOI: 10.1038/ncomms15906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. D. W. Allen, S. J. Coles, M. E. Light, and M. B. Hursthouse. Inorg. Chim. Acta, 2004, 357(5), 1558-1564, DOI: 10.1016/j.ica.2003.12.001.

    Article  CAS  Google Scholar 

  21. S. Karmaker, S. Ghosh, S. E. Kabir, D. T. Haworth, and S. V. Lindeman. Inorg. Chim. Acta, 2012, 382(1), 199-202, DOI: 10.1016/j.ica.2011.11.053.

    Article  CAS  Google Scholar 

  22. H. Li, C. Z. Yao, X. C. Chai, G. F. Wang, J. Li, J. Wang, Z. W. Wei, and F. L. Zhou. Mol. Cryst. Liq. Cryst., 2018, 664 (1), 156-164, DOI: 10.1080/15421406.2018.1461837.

    Article  CAS  Google Scholar 

  23. R. Meijboom and A. Muller. Acta Crystallogr., Sect. E: Struct. Rep. Online, 2006, 62(10), m2642-m2644, DOI: 10.1107/S1600536806036634.

    Article  CAS  Google Scholar 

  24. F. Wu, H. Wang, and W. Chen. Appl. Organomet. Chem., 2019, 33(3), e4775, DOI: 10.1002/aoc.4775.

    Article  CAS  Google Scholar 

  25. D. E. Jenkins, R. E. Sykora, and Z. Assefa. Inorg. Chim. Acta, 2013, 406, 293-300, DOI: 10.1016/j.ica.2013.04.047.

    Article  CAS  Google Scholar 

  26. F. Bachechi, A. Burini, R. Galassi, and B. R. Pietroni. J. Mol. Struct., 2005, 740(1-3), 119-123, DOI: 10.1016/j.molstruc.2005.01.030.

    Article  CAS  Google Scholar 

  27. C. M. Hettrick and W. J. Scott. J. Am. Chem. Soc., 1991, 113(13), 4903-4910, DOI: 10.1021/ja00013a028.

    Article  CAS  Google Scholar 

  28. D. S. Suslov, M. V. Pakhomova, M. V. Bykov, I. A. Ushakov, and V. S. Tkach. Catal. Commun., 2019, 119, 16-21, DOI: 10.1016/j.catcom.2018.10.010.

    Article  CAS  Google Scholar 

  29. D. S. Suslov, M. V. Bykov, A. V. Kuzmin, P. A. Abramov, O. V. Kravchenko, M. V. Pakhomova, A. V. Rokhin, I. A. Ushakov, and V. S. Tkach. Catal. Commun., 2018, 106, 30-35, DOI: 10.1016/j.catcom.2017.12.010.

    Article  CAS  Google Scholar 

  30. D. S. Suslov, M. V. Bykov, M. V. Pakhomova, P. A. Abramov, I. A. Ushakov, and V. S. Tkach. Catal. Commun., 2017, 94, 69-72, DOI: 10.1016/j.catcom.2017.02.004.

    Article  CAS  Google Scholar 

  31. D. S. Suslov, M. V. Bykov, Z. D. Abramov, I. A. Ushakov, T. N. Borodina, V. I. Smirnov, G. V. Ratovskii, and V. S. Tkach. J. Organomet. Chem., 2020, 923, 121413, DOI: 10.1016/j.jorganchem.2020.121413.

    Article  CAS  Google Scholar 

  32. G. M. Sheldrick. Acta Crystallogr., Sect. A: Found. Crystallogr., 2008, 64(1), 112-122, DOI: 10.1107/S0108767307043930.

    Article  Google Scholar 

  33. G. M. Sheldrick. Acta Crystallogr., Sect. C: Struct. Chem., 2015, 71(1), 3-8, DOI: 10.1107/S2053229614024218.

    Article  Google Scholar 

  34. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, and H. Puschmann. J. Appl. Crystallogr., 2009, 42(2), 339-341, DOI: 10.1107/S0021889808042726.

    Article  CAS  Google Scholar 

  35. F. Neese, F. Wennmohs, U. Becker, and C. Riplinger. J. Chem. Phys., 2020, 152(22), 224108, DOI: 10.1063/5.0004608.

    Article  CAS  PubMed  Google Scholar 

  36. F. Neese. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2012, 2(1), 73-78, DOI: 10.1002/wcms.81.

    Article  CAS  Google Scholar 

  37. A. D. Becke. Phys. Rev. A, 1988, 38, 3098-3100.

    Article  CAS  Google Scholar 

  38. J. P. Perdew. Phys. Rev. B, 1986, 33, 8822-8824.

    Article  CAS  Google Scholar 

  39. K. Eichkorn, O. Treutler, H. Öhm, M. Häser, and R. Ahlrichs. Chem. Phys. Lett., 1995, 242, 652-660.

    Article  CAS  Google Scholar 

  40. F. Weigend. Phys. Chem. Chem. Phys., 2006, 8(9), 1057-1065, DOI: 10.1039/b515623h.

    Article  CAS  PubMed  Google Scholar 

  41. F. Weigend and R. Ahlrichs. Phys. Chem. Chem. Phys., 2005, 7(18), 3297-3305, DOI: 10.1039/b508541a.

    Article  CAS  PubMed  Google Scholar 

  42. D. Andrae, U. Haussermann, M. Dolg, H. Stoll, and H. Preuss. Theor. Chim. Acta, 1990, 77(2), 123-141, DOI: 10.1007/BF01114537.

    Article  CAS  Google Scholar 

  43. M. Bühl and H. Kabrede. J. Chem. Theory Comput., 2006, 2, 1282-1290, DOI: 10.1021/ct6001187.

    Article  CAS  PubMed  Google Scholar 

  44. M. Bühl, C. Reimann, D. A. Pantazis, T. Bredow, and F. Neese. J. Chem. Theory Comput., 2008, 4(9), 1449-1459, DOI: 10.1021/ct800172j.

    Article  CAS  PubMed  Google Scholar 

  45. C. J. Cramer and D. G. Truhlar. Phys. Chem. Chem. Phys., 2009, 11(46), 10757-10816, DOI: 10.1039/b907148b.

    Article  CAS  PubMed  Google Scholar 

  46. M. Waller, H. Braun, N. Hojdis, and M. Bühl. J. Chem. Theory Comput., 2007, 3, 2234-2242.

    Article  CAS  PubMed  Google Scholar 

  47. M. J. Szabo, R. F. Jordan, A. Michalak, W. E. Piers, T. Weiss, S.-Y. Yang, and T. Ziegler. Organometallics, 2004, 23(23), 5565-5572, DOI: 10.1021/om049485g.

    Article  CAS  Google Scholar 

  48. S. Tobisch and T. Ziegler. J. Am. Chem. Soc., 2004, 126(29), 9059-9071, DOI: 10.1021/ja048861l.

    Article  CAS  PubMed  Google Scholar 

  49. R. F. W. Bader. Chem. Rev., 1991, 91(5), 893-928, DOI: 10.1021/cr00005a013.

    Article  CAS  Google Scholar 

  50. T. Lu and F. Chen. J. Comput. Chem., 2012, 33(5), 580-592, DOI: 10.1002/jcc.22885.

    Article  CAS  PubMed  Google Scholar 

  51. V. S. Tkach, D. S. Suslov, G. Myagmarsuren, G. V. Ratovskii, A. V. Rohin, F. Tuczek, and F. K. Shmidt. J. Organomet. Chem., 2008, 693(12), 2069-2073, DOI: 10.1016/j.jorganchem.2007.12.019.

    Article  CAS  Google Scholar 

  52. D. S. Suslov, M. V. Bykov, M. V. Pakhomova, Z. D. Abramov, G. V. Ratovskii, I. A. Ushakov, T. N. Borodina, V. I. Smirnov, and V. S. Tkach. J. Mol. Struct., 2020, 1217, 128425, DOI: 10.1016/j.molstruc.2020.128425.

    Article  CAS  Google Scholar 

  53. J. Vicente, A. Arcas, D. Bautista, A. Tiripicchio, and M. Tiripicchio-Camellini. New J. Chem., 1996, 20, 345-356.

  54. V. S. Tkach, D. S. Suslov, N. V. Kurateva, M. V. Bykov, and M. V. Belova. Russ. J. Coord. Chem., 2011, 37(10), 752-756, DOI: 10.1134/S1070328411090119.

    Article  CAS  Google Scholar 

  55. N. V. Kuratieva, V. S. Tkach, D. S. Suslov, M. V. Bykov, and S. A. Gromilov. J. Struct. Chem., 2011, 52(4), 813-855, DOI: 10.1134/S0022476611040263.

    Article  CAS  Google Scholar 

  56. A. S. Novikov, D. M. Ivanov, M. S. Avdontceva, and V. Y. Kukushkin. CrystEngComm, 2017, 19(18), 2517-2525, DOI: 10.1039/C7CE00346C.

    Article  CAS  Google Scholar 

  57. S. A. Adonin, A. S. Novikov, and V. P. Fedin. Russ. J. Coord. Chem., 2020, 46(1), 37-41, DOI: 10.1134/S1070328420010017.

    Article  CAS  Google Scholar 

  58. A. S. Novikov. Crystals, 2020, 10(6), 537, DOI: 10.3390/cryst10060537.

    Article  CAS  Google Scholar 

  59. E. Espinosa, I. Alkorta, J. Elguero, and E. Molins. J. Chem. Phys., 2002, 117(12), 5529-5542, DOI: 10.1063/1.1501133.

    Article  CAS  Google Scholar 

  60. Q. He, J. Yang, and X. Meng. Chin. J. Chem. Phys., 2009, 22(5), 517-522, DOI: 10.1088/1674-0068/22/05/517-522.

    Article  CAS  Google Scholar 

  61. E. V. Bartashevich and V. G. Tsirelson. Russ. Chem. Rev., 2014, 83(12), 1181-1203, DOI: 10.1070/RCR4440.

    Article  CAS  Google Scholar 

  62. B. M. Trost and M. L. Crawley. Chem. Rev., 2003, 103(8), 2921-2944, DOI: 10.1021/cr020027w.

    Article  CAS  PubMed  Google Scholar 

  63. T. Graening and H.-G. Schmalz. Angew. Chem., 2003, 115(23), 2684-2688, DOI: 10.1002/ange.200301644.

    Article  Google Scholar 

  64. B. M. Trost and M. L. Crawley. In: Transition Met. Catal. Enantiosel. Allylic Substitution Org. Synth. / Ed. U. Kazmaier, Springer-Verlag: Berlin, Heidelberg, 2011, 321-340.

  65. B. M. Trost and T. J. Fullerton. J. Am. Chem. Soc., 1973, 95(1), 292-294, DOI: 10.1021/ja00782a080.

    Article  CAS  Google Scholar 

  66. I. Shimizu, T. Yamada, and J. Tsuji. Tetrahedron Lett., 1980, 21(33), 3199-3202, DOI: 10.1016/S0040-4039(00)77444-2.

    Article  CAS  Google Scholar 

  67. A. A. Vasilev, I. M. Aladzheva, and O. V. Bykhovskaya. Russ. Chem. Bull., 2017, 66(4), 661-665, DOI: 10.1007/s11172-017-1788-6.

    Article  CAS  Google Scholar 

  68. A. A. Vasilev, S. E. Lyubimov, E. P. Serebryakov, V. A. Davankov, M. I. Struchkova, and S. G. Zlotin. Russ. Chem. Bull., 2010, 59(3), 605-610, DOI: 10.1007/s11172-010-0120-5.

    Article  Google Scholar 

  69. H. Kinoshita, H. Shinokubo, and K. Oshima. Org. Lett., 2004, 6(22), 4085-4088, DOI: 10.1021/ol048207a.

    Article  CAS  PubMed  Google Scholar 

  70. Y. Gumrukcu, B. de Bruin, and J. N. H. Reek. ChemSusChem, 2014, 7(3), 890-896, DOI: 10.1002/cssc.201300723.

    Article  CAS  PubMed  Google Scholar 

  71. M. Kimura, M. Fukasaka, and Y. Tamaru. Heterocycles, 2006, 67(2), 535-542, DOI: 10.3987/COM-05-S(T)63.

    Article  Google Scholar 

  72. X. Huo, G. Yang, D. Liu, Y. Liu, I. D. Gridnev, and W. Zhang. Angew. Chem., Int. Ed., 2014, 53(26), 6776-6780, DOI: 10.1002/anie.201403410.

    Article  CAS  Google Scholar 

  73. D. J. C. Constable, P. J. Dunn, J. D. Hayler, G. R. Humphrey, J. L. Leazer Jr., R. J. Linderman, K. Lorenz, J. Manley, B. A. Pearlman, A. Wells, A. Zakshand, and T. Y. Zhang. Green Chem., 2007, 9(5), 411-420, DOI: 10.1039/B703488C.

    Article  CAS  Google Scholar 

  74. E. Espinosa, E. Molins, and C. Lecomte. Chem. Phys. Lett., 1998, 285(3-4), 170-173, DOI: 10.1016/S0009-2614(98)00036-0.

    Article  CAS  Google Scholar 

  75. M. V. Vener, A. N. Egorova, A. V. Churakov, and V. G. Tsirelson. J. Comput. Chem., 2012, 33(29), 2303-2309, DOI: 10.1002/jcc.23062.

    Article  CAS  PubMed  Google Scholar 

  76. M. Kimura, M. Futamata, K. Shibata, and Y. Tamaru. Chem. Commun., 2003, 2003(2), 234-235, DOI: 10.1039/b210920d.

    Article  Google Scholar 

  77. M. Kimura and Y. Tamaru. Mini-Rev. Org. Chem., 2009, 6(4), 392-397.

    Article  CAS  Google Scholar 

Download references

Funding

The study was supported by the Russian Science Foundation (project No. 19-73-00046).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. S. Suslov.

Ethics declarations

The authors declare that they have no conflict of interests.

Additional information

Russian Text © The Author(s), 2021, published in Zhurnal Strukturnoi Khimii, 2021, Vol. 62, No. 8, pp. 1305-1316.https://doi.org/10.26902/JSC_id81367

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bykov, M.V., Abramov, Z.D., Orlov, T.S. et al. STRUCTURE AND CATALYTIC PROPERTIES OF (ACETYLACETONATO-κ2O,O′)BIS(TRI(2-FURYL)PHOSPHINE) PALLADIUM(II) TETRAFLUOROBORATE. J Struct Chem 62, 1218–1228 (2021). https://doi.org/10.1134/S0022476621080072

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476621080072

Keywords

Navigation