Skip to main content
Log in

Elucidating the Origin of Regioselectivity in Palladium-Catalyzed Aromatic Fluorination: Mechanistic Investigation and Microkinetic Analysis

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Nucleophilic fluorination of aromatic rings can be done via a cross-coupling reaction catalyzed by palladium and biaryl monophosphine ligands such as AlPhos. Nevertheless, aromatic fluorination via palladium catalysis can lead to regioisomers, a serious problem for this kind of reaction. An ortho-deprotonation mechanism was proposed for this reaction in previous studies. However, this mechanism does not explain why the ortho product is not formed from para and meta substrates, and the details of the mechanism are not fully understood yet. This theoretical work discloses the mechanism behind regioisomers formation, which takes place via unimolecular ortho-elimination of HF. The computed free energy profile of the reaction was followed by a detailed microkinetic analysis, which explain the experiments quantitatively. The present study shows that the rotation of the aryne coordinated to the palladium to form a complex leading to the ortho product is critical for regioselectivity. This rotation has a high free energy barrier due to steric repulsion with the adamantane group of the ligand. Such a feature impedes the formation of ortho product from para and meta substrates and allows the formation of the ortho product selectively from the ortho substrate.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Inoue M, Sumii Y, Shibata N (2020) Contribution of Organofluorine Compounds to Pharmaceuticals. ACS Omega 5:10633–10640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Han J, Remete AM, Dobson LS, Kiss L, Izawa K, Moriwaki H, Soloshonok VA, O’Hagan D (2020) Next generation organofluorine containing blockbuster drugs. J Fluorine Chem 239:109639

    Article  CAS  Google Scholar 

  3. Yerien DE, Bonesi S, Postigo A (2016) Fluorination methods in drug discovery. Org Biomol Chem 14:8398–8427

    Article  CAS  PubMed  Google Scholar 

  4. Khandelwal M, Pemawat G, KanwarKhangarot R (2022) Recent Developments in Nucleophilic Fluorination with Potassium Fluoride (KF): A Review. Asian J Org Chem 11:e202200325

    Article  CAS  Google Scholar 

  5. Ajenjo J, Destro G, Cornelissen B, Gouverneur V (2021) Closing the gap between (19)F and (18)F chemistry. EJNMMI Radiopharm Chem 6:33

    Article  PubMed  PubMed Central  Google Scholar 

  6. Priyadarsini A, Mallik BS (2023) Electrocatalytic Mechanism of Water Splitting by Ultralow Content of RuO2-supported on Fluorine-Doped Graphene Using a Constant Potential Method. J Phys Chem C 127:18350–18364

    Article  CAS  Google Scholar 

  7. Milián-Medina B, Gierschner J (2017) “Though It Be but Little, It Is Fierce”: Excited State Engineering of Conjugated Organic Materials by Fluorination. J Phys Chem Lett 8:91–101

    Article  PubMed  Google Scholar 

  8. Nishibori S, Hara N, Ogasawara S, Sasaki S-i, Tamiaki H (2024) Synthesis of C3-fluoroalkylated chlorophyll-a derivatives and fine tuning of their optical properties by the fluorination degree. J Photochem Photobiol, A 446:115118

    Article  CAS  Google Scholar 

  9. Zhang C, Wu H, Feng S, Meng J (2023) Fluorination as a powerful tool for improving water/salt selectivity of hydrophilic polyethersulfone. J Membr Sci 687:122030

    Article  CAS  Google Scholar 

  10. Champagne PA, Desroches J, Hamel J-D, Vandamme M, Paquin J-F (2015) Monofluorination of Organic Compounds: 10 Years of Innovation. Chem Rev 115:9073–9174

    Article  CAS  PubMed  Google Scholar 

  11. Campbell MG, Ritter T (2014) Late-Stage Formation of Carbon-Fluorine Bonds. Chem Rec 14:482–491

    Article  CAS  PubMed  Google Scholar 

  12. Patel C, André-Joyaux E, Leitch JA, de Irujo-Labalde XM, Ibba F, Struijs J, Ellwanger MA, Paton R, Browne DL, Pupo G, Aldridge S, Hayward MA, Gouverneur V (2023) Fluorochemicals from fluorspar via a phosphate-enabled mechanochemical process that bypasses HF. Science 381:302–306

    Article  CAS  PubMed  Google Scholar 

  13. Lee J-W, Oliveira MT, Jang HB, Lee S, Chi DY, Kim DW, Song CE (2016) Hydrogen-bond promoted nucleophilic fluorination: concept, mechanism and applications in positron emission tomography. Chem Soc Rev 45:4638–4650

    Article  CAS  PubMed  Google Scholar 

  14. Melo AS, Valle MS, Pliego JR (2023) Accelerating SN2 nucleophilic fluorination of primary alkyl bromide using an 18-crown-6 and fluorinated bulky alcohol phase transfer system. J Fluor Chem 269:110146

    Article  CAS  Google Scholar 

  15. Pliego JR (2021) The Role of Intermolecular Forces in Ionic Reactions: The Solvent Effect, Ion-Pairing, Aggregates and Structured Environment. Org Biomol Chem 19:1900–1914

    Article  CAS  PubMed  Google Scholar 

  16. Silva SL, Valle MS, Pliego JR (2020) Nucleophilic Fluorination with KF Catalyzed by 18-Crown-6 and Bulky Diols: A Theoretical and Experimental Study. J Org Chem 85:15457–15465

    Article  CAS  PubMed  Google Scholar 

  17. Silva SL, Valle MS, Pliego JR (2020) Micro-solvation and counter ion effects on ionic reactions: Activation of potassium fluoride with 18-crown-6 and tert-butanol in aprotic solvents. J Mol Liq 319:114211

    Article  CAS  Google Scholar 

  18. Dalessandro EV, Pliego JR (2020) Theoretical design of new macrocycles for nucleophilic fluorination with KF: thiourea-crown-ether is predicted to overcome [2.2.2]-cryptand. Mol Syst Des Eng 5:1513–1523

    Article  CAS  Google Scholar 

  19. Kang SM, Kim CH, Lee KC, Kim DW (2019) Bis-triethylene Glycolic Crown-5-calix[4]arene: A Promoter of Nucleophilic Fluorination Using Potassium Fluoride. Org Lett 21:3062–3066

    Article  CAS  PubMed  Google Scholar 

  20. Jadhav VH, Choi W, Lee S-S, Lee S, Kim DW (2016) Bis-tert-Alcohol-Functionalized Crown-6-Calix[4]arene: An Organic Promoter for Nucleophilic Fluorination. Chem Eur J 22:4515–4520

    Article  CAS  PubMed  Google Scholar 

  21. Jadhav VH, Jang SH, Jeong H-J, Lim ST, Sohn M-H, Kim J-Y, Lee S, Lee JW, Song CE, Kim DW (2012) Oligoethylene Glycols as Highly Efficient Mutifunctional Promoters for Nucleophilic-Substitution Reactions. Chem Eur J 18:3918–3924

    Article  CAS  PubMed  Google Scholar 

  22. Lee JW, Yan H, Jang HB, Kim HK, Park SW, Lee S, Chi DY, Song CE (2009) Bis-Terminal Hydroxy Polyethers as All-Purpose, Multifunctional Organic Promoters: A Mechanistic Investigation and Applications. Angew Chem, Int Ed 48:7683–7686

    Article  CAS  Google Scholar 

  23. Kim DW, Jeong HJ, Lim ST, Sohn MH, Katzenellenbogen JA, Chi DY (2008) Facile nucleophilic fluorination reactions using tert-alcohols as a reaction medium: Significantly enhanced reactivity of alkali metal fluorides and improved selectivity. J Org Chem 73:957–962

    Article  CAS  PubMed  Google Scholar 

  24. Oh Y-H, Kim DW, Lee S (2022) Ionic Liquids as Organocatalysts for Nucleophilic Fluorination: Concepts and Perspectives. Molecules 27:5702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hong CM, Whittaker AM, Schultz DM (2021) Nucleophilic Fluorination of Heteroaryl Chlorides and Aryl Triflates Enabled by Cooperative Catalysis. J Org Chem 86:3999–4006

    Article  CAS  PubMed  Google Scholar 

  26. Lee WC, Kang SM, Lee BC, Kim SE, Kim DW (2020) Multifunctional Crown-5-calix[4]arene-based Phase-Transfer Catalysts for Aromatic 18F-Fluorination. Org Lett 22:9551–9555

    Article  CAS  PubMed  Google Scholar 

  27. Morales-Colón MT, See YY, Lee SJ, Scott PJH, Bland DC, Sanford MS (2021) Tetramethylammonium Fluoride Alcohol Adducts for SNAr Fluorination. Org Lett 23:4493–4498

    Article  PubMed  PubMed Central  Google Scholar 

  28. Sather AC, Buchwald SL (2016) The Evolution of Pd0/PdII-Catalyzed Aromatic Fluorination. Acc Chem Res 49:2146–2157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Pliego JR (2021) Catalytic Cycle and off-Cycle Steps in the Palladium-Catalyzed Fluorination of Aryl Bromide with Biaryl Monophosphine Ligands: Theoretical Free Energy Profile. Mol Catal 506:111540

    Article  CAS  Google Scholar 

  30. Sharninghausen LS, Brooks AF, Winton WP, Makaravage KJ, Scott PJH, Sanford MS (2020) NHC-Copper Mediated Ligand-Directed Radiofluorination of Aryl Halides. J Am Chem Soc 142:7362–7367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mu X, Zhang H, Chen P, Liu G (2014) Copper-catalyzed fluorination of 2-pyridyl aryl bromides. Chem Sci 5:275–280

    Article  CAS  Google Scholar 

  32. Pliego JR (2022) Copper-Catalyzed Aromatic Fluorination of 2-(2-bromophenyl)pyridine via Cu(I)/Cu(III) Mechanism in Acetonitrile Solvent: Cluster-Continuum Free Energy Profile and Microkinetic Analysis. Mol Catal 529:112560

    Article  CAS  Google Scholar 

  33. Pliego JR (2022) Copper-mediated aromatic fluorination using N-heterocycle-carbene ligand: Free energy profile of the Cu(I)/Cu(III) and Cu(II) radical mechanisms. J Organomet Chem 973–974:122397

    Article  Google Scholar 

  34. Sather AC, Lee HG, De La Rosa VY, Yang Y, Müller P, Buchwald SL (2015) A Fluorinated Ligand Enables Room-Temperature and Regioselective Pd-Catalyzed Fluorination of Aryl Triflates and Bromides. J Am Chem Soc 137:13433–13438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Milner PJ, Yang Y, Buchwald SL (2015) In-Depth Assessment of the Palladium-Catalyzed Fluorination of Five-Membered Heteroaryl Bromides. Organometallics 34:4775–4780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Milner PJ, Kinzel T, Zhang Y, Buchwald SL (2014) Studying Regioisomer Formation in the Pd-Catalyzed Fluorination of Aryl Triflates by Deuterium Labeling. J Am Chem Soc 136:15757–15766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lee HG, Milner PJ, Buchwald SL (2014) Pd-Catalyzed Nucleophilic Fluorination of Aryl Bromides. J Am Chem Soc 136:3792–3795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lee HG, Milner PJ, Buchwald SL (2013) An Improved Catalyst System for the Pd-Catalyzed Fluorination of (Hetero)Aryl Triflates. Org Lett 15:5602–5605

    Article  CAS  PubMed  Google Scholar 

  39. Senecal TD, Parsons AT, Buchwald SL (2011) Room Temperature Aryl Trifluoromethylation via Copper-Mediated Oxidative Cross-Coupling. J Org Chem 76:1174–1176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Maimone TJ, Milner PJ, Kinzel T, Zhang Y, Takase MK, Buchwald SL (2011) Evidence for in Situ Catalyst Modification during the Pd-Catalyzed Conversion of Aryl Triflates to Aryl Fluorides. J Am Chem Soc 133:18106–18109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Grushin VV (2010) The Organometallic Fluorine Chemistry of Palladium and Rhodium: Studies toward Aromatic Fluorination. Acc Chem Res 43:160–171

    Article  CAS  PubMed  Google Scholar 

  42. Watson DA, Su M, Teverovskiy G, Zhang Y, García-Fortanet J, Kinzel T, Buchwald SL (2009) Formation of ArF from LPdAr(F): Catalytic Conversion of Aryl Triflates to Aryl Fluorides. Science 325:1661–1664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Yandulov DV, Tran NT (2007) Aryl-Fluoride Reductive Elimination from Pd(II): Feasibility Assessment from Theory and Experiment. J Am Chem Soc 129:1342–1358

    Article  CAS  PubMed  Google Scholar 

  44. Perdew JP, Burke K, Ernzerhof M (1996) Generalized Gradient Approximation Made Simple. Phys Rev Lett 77:3865–3868

    Article  CAS  PubMed  Google Scholar 

  45. Zheng JJ, Xu XF, Truhlar DG (2011) Minimally augmented Karlsruhe basis sets. Theor Chem Acc 128:295–305

    Article  CAS  Google Scholar 

  46. Weigend F, Ahlrichs R (2005) Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys Chem Chem Phys 7:3297–3305

    Article  CAS  PubMed  Google Scholar 

  47. Andrae D, Häußermann U, Dolg M, Stoll H, Preuß H (1990) Energy-adjustedab initio pseudopotentials for the second and third row transition elements. Theor Chim Acta 77:123–141

    Article  CAS  Google Scholar 

  48. Mardirossian N, Head-Gordon M (2016) ωB97M-V: A combinatorially optimized, range-separated hybrid, meta-GGA density functional with VV10 nonlocal correlation. J Chem Phys 144:214110

    Article  PubMed  Google Scholar 

  49. Neese F (2022) Software update: The ORCA program system—Version 5.0. Wiley Interdiscip Rev Comput Mol Sci 12:e1606

    Article  Google Scholar 

  50. Neese F, Wennmohs F, Becker U, Riplinger C (2020) The ORCA quantum chemistry program package. J Chem Phys 152:224108

    Article  CAS  PubMed  Google Scholar 

  51. Mardirossian N, Head-Gordon M (2017) Thirty years of density functional theory in computational chemistry: an overview and extensive assessment of 200 density functionals. Mol Phys 115:2315–2372

    Article  CAS  Google Scholar 

  52. Iron MA, Janes T (2019) Evaluating Transition Metal Barrier Heights with the Latest Density Functional Theory Exchange-Correlation Functionals: The MOBH35 Benchmark Database. J Phys Chem A 123:3761–3781

    Article  CAS  PubMed  Google Scholar 

  53. Cances E, Mennucci B, Tomasi J (1997) A new integral equation formalism for the polarizable continuum model: Theoretical background and applications to isotropic and anisotropic dielectrics. J Chem Phys 107:3032–3041

    Article  CAS  Google Scholar 

  54. Su P, Li H (2009) Continuous and smooth potential energy surface for conductorlike screening solvation model using fixed points with variable areas. J Chem Phys 130:074109–074113

    Article  PubMed  Google Scholar 

  55. Pliego JR Jr, Riveros JM (2002) Parametrization of the PCM model for calculating solvation free energy of anions in dimethyl sulfoxide solutions. Chem Phys Lett 355:543–546

    Article  CAS  Google Scholar 

  56. Luque FJ, Zhang Y, Aleman C, Bachs M, Gao J, Orozco M (1996) Solvent effects in chloroform solution: Parametrization of the MST/SCRF continuum model. J Phys Chem 100:4269–4276

    Article  CAS  Google Scholar 

  57. Luque FJ, Bachs M, Aleman C, Orozco M (1996) Extension of MST/SCRF method to organic solvents: ab initio and semiempirical parametrization for neutral solutes in CCl 4. J Comput Chem 17:806–820

    Article  CAS  Google Scholar 

  58. Barca GMJ, Bertoni C, Carrington L, Datta D, Silva ND, Deustua JE, Fedorov DG, Gour JR, Gunina AO, Guidez E, Harville T, Irle S, Ivanic J, Kowalski K, Leang SS, Li H, Li W, Lutz JJ, Magoulas I, Mato J, Mironov V, Nakata H, Pham BQ, Piecuch P, Poole D, Pruitt SR, Rendell AP, Roskop LB, Ruedenberg K, Sattasathuchana T, Schmidt MW, Shen J, Slipchenko L, Sosonkina M, Sundriyal V, Tiwari A, Vallejo JLG, Westheimer B, Włoch M, Xu P, Zahariev F, Gordon MS (2020) Recent developments in the general atomic and molecular electronic structure system. J Chem Phys 152:154102

    Article  CAS  PubMed  Google Scholar 

  59. Stevens WJ, Krauss M, Basch H, Jasien PG (1992) Relativistic Compact Effective Potentials and Efficient, Shared-Exponent Basis-Sets for the 3Rd-Row, 4Th-Row, and 5Th-Row Atoms. Can J Chem 70:612–630

    Article  CAS  Google Scholar 

  60. Marenich AV, Cramer CJ, Truhlar DG (2009) Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. J Phys Chem B 113:6378–6396

    Article  CAS  PubMed  Google Scholar 

  61. Sciortino G, Maseras F (2023) Microkinetic modelling in computational homogeneous catalysis and beyond. Theor Chem Acc 142:99

    Article  CAS  Google Scholar 

  62. Besora M, Maseras F (2018) Microkinetic modeling in homogeneous catalysis. Wiley Interdiscip Rev Comput Mol Sci 8:e1372

    Article  Google Scholar 

  63. Janse van Rensburg W, Petersen MA, Datt MS, van den Berg J-A, van Helden P (2015) On the Kinetic Interpretation of DFT-Derived Energy Profiles: Cu-Catalyzed Methanol Synthesis. Catal Lett 145:559–568

    Article  CAS  Google Scholar 

  64. Ianni JC (2019) Kintecus. Version 6.8 edn. http://www.kintecus.com

Download references

Acknowledgements

The authors thank the agencies CNPq, FAPEMIG, and CAPES for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josefredo R. Pliego Jr.

Ethics declarations

Conflicts of Interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

10562_2024_4706_MOESM1_ESM.docx

Supplementary file1 The coordinates of the optimized structures and the Tables with the calculations are available. (DOCX 217 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pliego, J.R. Elucidating the Origin of Regioselectivity in Palladium-Catalyzed Aromatic Fluorination: Mechanistic Investigation and Microkinetic Analysis. Catal Lett (2024). https://doi.org/10.1007/s10562-024-04706-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10562-024-04706-x

Keywords

Navigation