Skip to main content
Log in

STRUCTURE OF THE IMMEDIATE ENVIRONMENT OF IONS IN ZINC CHLORIDE AQUEOUS SOLUTIONS ACCORDING TO XRD DATA

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Quantitative characteristics of the immediate environment of ions in aqueous ZnCl2 solutions are determined by XRD in a wide range of concentrations. In a saturated solution, the Zn2+ ion coordinates two water molecules at a distance of 0.208 nm. The ions form an associate containing one Cl ion at a distance of 0.225 nm and two Cl ions at a distance of 0.380 nm. As the concentration decreases, the Cl ions leave the associate, starting with more distant ions and proceeding with the ion of the contact ion pair. As a result, the ion pairs are destroyed and Zn2+ and Cl ions undergo independent hydration. The number of water molecules in the coordination sphere of Zn2+ ions increases up to six within a distance of 0.212 nm. Dilution naturally increases the number of water molecules in the anion′s hydration sphere at an average distance of 0.312 nm and in the cation′s second coordination sphere at an average distance of 0.424 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

REFERENCES

  1. S. P. Dagnall, D. N. Hagne, and A. D. C. Towl. J. Chem. Soc. Faraday Trans., 1982, 78, 2161.

    Article  CAS  Google Scholar 

  2. R. Caminiti, P. Cucca, M. Monduzzi, G. Saba, and G. Crisponi. J. Chem. Phys., 1984, 81, 543, DOI: 10.1063/1.447336.

    Article  CAS  Google Scholar 

  3. K. Ozutsumi, T. Yamaguchi, H. Ohtaki, K. Tohji, and Y. Udagawa. Bull. Chem. Soc. Jap., 1985, 58, 2786, DOI: 10.1246/bcsj.58.2786.

    Article  CAS  Google Scholar 

  4. A. Munoz-Paez, R. R. Pappalardo, and M. E. Sanchez. J. Am. Chem. Soc., 1995, 117, 11710, DOI: 10.1021/ja00152a012.

    Article  CAS  Google Scholar 

  5. P. DAngelo, A. Zitolo, F. Ceccacci, R. Caminiti, and G. Aquilanti. J. Chem. Phys., 2011, 135, 154509, DOI: 10.1063/1.3653939.

    Article  PubMed  CAS  Google Scholar 

  6. Y. P. Yongyai, S. Kokpol, and B. M. Rode. Chem. Phys., 1991, 156, 403, DOI: 10.1016/0301-0104(91)89009-Y.

    Article  CAS  Google Scholar 

  7. G. W. Marini, N. R. Texler, and B. M. Rode. J. Phys. Chem., 1996, 100, 6808, DOI: 10.1021/jp953375t.

    Article  CAS  Google Scholar 

  8. S. Obst and H. Bradaczek. J. Mol. Model., 1997, 3, 224, DOI: 10.1007/s008940050034.

    Article  CAS  Google Scholar 

  9. M. Arab, D. Bougeard, and K. S. Smirnov. Chem. Phys. Lett., 2003, 379, 268, DOI: 10.1016/S0009-2614(03)01252-1.

    Article  CAS  Google Scholar 

  10. M. Q. Fatmi, T. S. Hofer, B. R. Randolf, and B. M. Rode. J. Chem. Phys., 2005, 123, 054514, DOI: 10.1063/1.1996575.

    Article  PubMed  CAS  Google Scholar 

  11. A. M. Mohammed, H. H. Loeffler, Y. Inada, K. Tanada, and S. Funahashi. J. Mol. Liq., 2005, 119, 55, DOI: 10.1016/j.molliq.2004.10.008.

    Article  CAS  Google Scholar 

  12. E. Cauët, S. Bogatko, J. H. Weare, J. L. Fulton, G. K. Schenter, and E. J. Bylaska. J. Chem. Phys., 2010, 132, 194502, DOI: 10.1063/1.3421542.

    Article  PubMed  CAS  Google Scholar 

  13. A. Kuzmin, S. Obst, and J. Purans. J. Phys. Condens. Matter, 1997, 9, 10065, DOI: 10.1088/0953-8984/9/46/004.

    Article  CAS  Google Scholar 

  14. P. DAngelo, V. Barone, G. Chillemi, N. Sanna, W. Meyer-Klaucke, and N. V. Pavel. J. Am. Chem. Soc., 2002, 124, 1958, DOI: 10.1021/ja015685x.

    Article  PubMed  CAS  Google Scholar 

  15. V. Migliorati, G. Mancini, S. Tatoli, A. Zitolo, A. Filipponi, S. De Panfilis, A. Di Cicco, and P. DAngelo. Inorg. Chem., 2013, 52, 1141, DOI: 10.1021/ic302530k.

    Article  PubMed  CAS  Google Scholar 

  16. D. H. Powell, P. M. N. Gullidge, G. W. Neilson, and M. C. Bellissent-Funel. Mol. Phys., 1990, 71, 1107, DOI: 10.1080/00268979000102351.

    Article  CAS  Google Scholar 

  17. G. Loffler, Th. Mager, H. Bertagnolli, and O. Steinhauser. J. Chem. Phys., 1996, 104, 7239, DOI: 10.1063/1.471405.

    Article  Google Scholar 

  18. W. W. Rudolph and C. C. Pye. Phys. Chem. Chem. Phys., 1999, 1, 4583, DOI: 10.1039/A904051J.

    Article  CAS  Google Scholar 

  19. P. Novotny and O. Söhnel. J. Chem. Eng. Data, 1988, 33, 49, DOI: 10.1021/je00051a018.

    Article  CAS  Google Scholar 

  20. OriginPro 7.5. OriginLab Corporation: USA, 1991-2003.

  21. G. Johansson and M. Sandstrom. Chem. Scripta, 1973, 4, 195.

  22. M. Alves Marques, M. I. Cabaço, M. I. de Barros Marques, and A. M. Gaspar. J. Phys.: Condens. Matter., 2002, 14, 7427.

    Article  CAS  Google Scholar 

  23. G. Paschina, G. Piccaluga, G. Pinna, and M. Magini. J. Chem. Phys., 1983, 78, 5745, DOI: 10.1063/1.445457.

    Article  CAS  Google Scholar 

  24. R. J. Wilcox, P. B. Losey, J. C. W. Folmer, J. D. Martin, M. Zeller, and R. Sommer. Inorg. Chem., 2015, 54, 1109, DOI: 10.1021/ic5024532.

    Article  PubMed  CAS  Google Scholar 

  25. E. Cauët, S. A. Bogatko, E. J. Bylaska, and J. H. Weare. Inorg. Chem., 2012, 51, 10856, DOI: 10.1021/ic301346k.

    Article  PubMed  CAS  Google Scholar 

  26. M. Busato, A. Melchior, V. Migliorati, A. Colella, I. Persson, G. D. Mancini, Veclani, and P. DAngelo. Inorg. Chem., 2020, 59, 17291, DOI: 10.1021/acs.inorgchem.0c02494.

    Article  PubMed  CAS  Google Scholar 

  27. E. Duboué-Dijon, P. E. Mason, H. E. Fischer, H. E. Fischer, and P. Jungwirth. J. Phys. Chem. B, 2018, 122, 3296, DOI: 10.1021/acs.jpcb.7b09612.

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

The reported study was funded by RFBR and Ivanovo Region, project number 20-43-370001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. R. Smirnov.

Ethics declarations

The authors declare that they have no conflict of interests.

Additional information

Russian Text © The Author(s), 2021, published in Zhurnal Strukturnoi Khimii, 2021, Vol. 62, No. 7, pp. 1098-1104.https://doi.org/10.26902/JSC_id76124

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smirnov, P.R., Grechin, O.V. STRUCTURE OF THE IMMEDIATE ENVIRONMENT OF IONS IN ZINC CHLORIDE AQUEOUS SOLUTIONS ACCORDING TO XRD DATA. J Struct Chem 62, 1020–1026 (2021). https://doi.org/10.1134/S0022476621070052

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476621070052

Keywords

Navigation