Skip to main content
Log in

ORIENTATION OF WATER MOLECULES NEAR A GLOBULAR PROTEIN

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Orientation of water molecules in the vicinity of the globular protein SNase is studied. It is shown that two types of characteristic orientations can be distinguished among molecules in direct contact with the protein. Approximately 44% of these molecules are oriented by their OH vector towards the nearest protein atom forming a donor hydrogen bond; 20% of them are directed by their oxygen towards the nearest atom while their protons are directed mainly away from the protein. By forming a network of hydrogen bonds with other water molecules, these molecules initiate orientation correlations in the protein environment within a region of 0.45 nm. More distant water molecules are arranged randomly with respect to the protein. The orientation is described by the angle between vector N directed from the water molecule to the nearest protein atom and characteristic vectors of the water molecule (directions OH, OL, and dipole moment D). A more detailed information about orientations is retrieved from a two-dimensional distribution diagram P(cos(θ), φ) representing direction N in a spherical coordinate system associated with the water molecule. The diagram provides an unambiguous description for the orientation of water molecules and allows a quantitative calculation of the fraction of molecules with a specified orientation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

REFERENCES

  1. B. Bagchi. Chem. Rev., 2005, 105, 3197-3219.

  2. M.-C. Bellissent-Funel, A. Hassanali, M. Havenith, R. Henchman, P. Pohl, F. Sterpone, D. van der Spoel, Y. Xu, and A. E. Garcia. Chem. Rev., 2016, 116, 7673-7697.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. D. Laage, T. Elsaesser, and J. T. Hynes. Chem. Rev., 2017, 117, 10694-10725.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. J. Monroe, M. Barry, A. DeStefano, P. A. Gokturk, S. Jiao, D. Robinson-Brown, T. Webber, E. J. Crumlin, S. Han, and M. S. Shell. Annu. Rev. Chem. Biomol. Eng., 2020, 11, 523-557.

    Article  CAS  PubMed  Google Scholar 

  5. S. Shin and A. P. Willard. J. Phys. Chem. B, 2018, 122, 6781-6789.

    Article  CAS  PubMed  Google Scholar 

  6. A. R. Zolghadr, M. H. Ghatee, and A. Zolghadr. J. Phys. Chem. C, 2014, 118, 19889-19903.

    Article  CAS  Google Scholar 

  7. M. Jorge and M. N. D. S. Cordeiro. J. Phys. Chem. C, 2007, 111, 17612-17626.

    Article  CAS  Google Scholar 

  8. J. Chowdhary and B. M. Ladanyi. J. Phys. Chem. B, 2006, 110, 15442-15453.

    Article  CAS  PubMed  Google Scholar 

  9. P. Jedlovszky, A. Vincze, and G. Horvai. Phys. Chem. Chem. Phys., 2004, 6, 1874-1879.

    Article  CAS  Google Scholar 

  10. P. Jedlovszky, A. Vincze, and G. Horvai. J. Chem. Phys., 2002, 117(5), 2271.

    Article  CAS  Google Scholar 

  11. N. Watanabe, K. Suga, and H. Umakoshi. J. Chem., 2019, Article ID 4867327.

    Article  CAS  Google Scholar 

  12. A. Srivastava and A. Debnath. J. Chem. Phys., 2018, 148, 094901.

    Article  CAS  Google Scholar 

  13. S. Y. Bhide and M. L. Berkowitz. J. Chem. Phys., 2005, 123, 224702.

    Article  CAS  PubMed  Google Scholar 

  14. P. Jedlovszky and M. Mezei. J. Phys. Chem. B, 2001, 105, 3614-3623.

    Article  CAS  Google Scholar 

  15. I. Skarmoutsos and E. Guardia. J. Chem. Phys., 2020, 152, 234501.

    Article  CAS  PubMed  Google Scholar 

  16. E. Xia and A. J. Patela. PNAS, 2016, 113(17), 4549-4551.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. P. Jedlovszky, M.Predota, and I. Nezbeda. Mol. Phys., 2006, 104(15), 2465-2476.

    Article  CAS  Google Scholar 

  18. B. Guillot, Y. Guissani, and S. Bratos. J. Chem. Phys., 1991, 95, 3643.

    Article  CAS  Google Scholar 

  19. P. Rani and P. Biswas. J. Phys. Chem. B, 2015, 119(34), 10858-10867.

    Article  CAS  PubMed  Google Scholar 

  20. B.Qiaoa, F. Jiménez-Ángelesa, T. D. Nguyenb, and M. Olvera de , 2019, 116(39), 19274-19281.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. P. Jedlovszky, R. A. Horvath, and M. Szori. J. Phys. Chem. C, 2020, 124, 10615-10626.

    Article  CAS  Google Scholar 

  22. H. Ghatee, A. R. Zolghadr, F. Moosavi, and Y. Ansari. J. Chem. Phys., 2012, 136, 124706.

    Article  CAS  PubMed  Google Scholar 

  23. V. P. Voloshin, N. N. Medvedev, N. Smolin, A. Geiger, and R. Winter. Phys. Chem. Chem. Phys., 2015, 17, 8499-8508.

    Article  CAS  PubMed  Google Scholar 

  24. N. Smolin, V. P. Voloshin, A. V. Anikeenko, A. Geiger, R. Winter, and N. N. Medvedev. Phys. Chem. Chem. Phys., 2017, 19(9), 6345-6357.

    Article  CAS  PubMed  Google Scholar 

  25. V. Voloshin, N. Smolin, A. Geiger, R. Winter, and N. N. Medvedev. Phys. Chem. Chem. Phys., 2019, 21, 19469-19479.

    Article  CAS  PubMed  Google Scholar 

  26. V. P. Voloshin and N. N. Medvedev. J. Struct. Chem., 2019, 60(6), 942-951.

    Article  CAS  Google Scholar 

  27. H. J. C. Berendsen, J. R. Grigera, and T. P. Straatsma. J. Phys. Chem., 1987, 91, 6269-6271.

    Article  CAS  Google Scholar 

  28. B. Hess, C. Kutzner, D. van der Spoel, and E. Lindahl. J. Chem. Theory Comput., 2008, 4, 435-447.

    Article  CAS  PubMed  Google Scholar 

  29. S. Pronk, S. Páll, R. Schulz, P. Larsson, P. Bjelkmar, R. Apostolov, M. R. Shirts, J. C Smith, P. M. Kasson,

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. F. Zhao and B. G. M. van Wachem. Acta Mech., 2013, 224, 3091-3109.

    Article  Google Scholar 

  31. D. C. Rapaport. J. Comput. Phys., 1985, 60, 306-314.

    Article  CAS  Google Scholar 

  32. V. P. Voloshin and Y. I. Naberuchin. Radioelektron., Nanosist., Inf. Tekhnol., 2020, 12(1), 69-80.

  33. K. A. Kulikov. Kurs Sfericheskoy Astronomii (Spherical Astronomy Course) [in Russian]. Nauka: Moscow, 1976.

  34. V. Ye. Zharov. Sfer. Astronom. (Spherical Astronomy) [in Russian]. Vek 2: Fryazino, 2006.

  35. X. Chen, I. Weber, and R. W. Harrison. J. Phys. Chem. B, 2008, 112, 12073-12080.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. N. Bhattacharjee and P. Biswas. Biophys. Chem., 2011, 158, 73-80.

    Article  CAS  PubMed  Google Scholar 

  37. F. Persson, P. Soederhjelm, and B. Halle. J. Chem. Phys., 2018, 148, 215101.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The reported study was funded by RFBR, project number 18-03-00045.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. N. Medvedev.

Ethics declarations

The authors declare that they have no conflict of interests.

Additional information

Russian Text © The Author(s), 2021, published in Zhurnal Strukturnoi Khimii, 2021, Vol. 62, No. 5, pp. 745-757.https://doi.org/10.26902/JSC_id72868

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Voloshin, V.P., Medvedev, N.N. ORIENTATION OF WATER MOLECULES NEAR A GLOBULAR PROTEIN. J Struct Chem 62, 692–703 (2021). https://doi.org/10.1134/S002247662105005X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002247662105005X

Keywords

Navigation