Skip to main content
Log in

INFLUENCE OF THE TEMPERATURE OF MOLYBDENUM SUBSTRATES ON THE STRUCTURE OF DIAMOND COATINGS OBTAINED BY CHEMICAL VAPOR DEPOSITION FROM A HIGH-SPEED MICROWAVE PLASMA JET

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

We present a study of structural features of diamond coatings prepared by chemical vapor deposition from a hydrogen/methane mixture activated by a microwave discharge using a high-speed jet to transport the mixture to molybdenum substrates heated up to 525 °C, 690 °C, and 1000 °C. The influence of the substrate temperature on morphology, composition, and structure of diamond coatings are studied by scanning electron microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, and near edge X-ray absorption fine structure. The diamond crystals enlarge in size, their density on the substrate increases, while the quality and the crystal surface purity are enhanced as a result of temperature increase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

REFERENCES

  1. H. Liu and D. S. Dandy. Diamond Relat. Mater., 1995, 4, 1173.

    Article  CAS  Google Scholar 

  2. S.-T. Lee, Z. Lin, and X. Jiang. Mater. Sci. Eng., R, 1999, 25, 123.

    Article  Google Scholar 

  3. T. A. Grotjohn, J. Asmussen. In: Diamond Films Handbook / Eds. J. Asmussen and D. K. Reinhard. Marcel Dekker: New York, 2001, 211–301.

  4. P. W. May. Philos. Trans. R. Soc. London, Ser. A, 2000, 358, 473.

    Article  CAS  Google Scholar 

  5. K. F. Sergeichev, V. V. Dushík, V. A. Ivanov, V. G. Lapteva, Yu. V. Lakhotkin, N. A. Lukina, M. A. Borisenko, and L. V. Poddubnaya. Usp. Prikl. Fiz., 2014, 2, 453.

  6. C.-S. Yan, Y. K. Vohra, H.-K. Mao, and R. J. Hemley. Proc. Natl. Acad. Sci. U. S. A., 2002, 99, 12523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. O. V. Polyakov, D. V. Gorodetskii, and A. V. Okotrub. Pisma Zh. Tekh. Fiz., 2013, 39, 13.

    Article  CAS  Google Scholar 

  8. R. S. Balmer, J. R. Brandon, S. L. Clewes, H. K. Dhillon, J. M. Dodson, I. Friel, P. N. Inglis, T. D. Madgwick, M. L. Markham, T. P. Mollart, N. Perkins, G. A. Scarsbrook, D. J. Twitchen, A. J. Whitehead, J. J. Wilman, and S. M. Woollard. J. Phys.: Condens. Matter, 2009, 21, 364221.

    Article  CAS  PubMed  Google Scholar 

  9. A. Gicquel, K. Hassouni, F. Silva, and J. Achard. Curr. Appl. Phys., 2001, 1, 479.

    Article  Google Scholar 

  10. Physics and Applications of CVD Diamond / Eds. S. Koizumi, C. Nebel and M. Nesladek. Wiley VCH, 2008.

  11. A. A. Emel′yanov, A. K. Rebrov, and I. B. Yudin. J. Appl. Mech. Tech. Phys., 2014, 55, 270.

    Article  Google Scholar 

  12. A. K. Rebrov, M. N. Andreev, T. T. B′yadovskiy, K. V. Kubrak, and I. B. Yudin. Rev. Sci. Instrum., 2016, 87, 103902.

    Article  CAS  PubMed  Google Scholar 

  13. A. K. Rebrov. Phys. – Usp., 2017, 60, 179.

    Article  CAS  Google Scholar 

  14. A. Rebrov. Diamond Relat. Mater., 2017, 72, 20.

    Article  CAS  Google Scholar 

  15. A. K. Rebrov, A. A. Emel′yanov, M. Yu. Plotnikov, and I. B. Yudin. J. Appl. Mech. Tech. Phys., 2017, 58, 881.

    Article  CAS  Google Scholar 

  16. Yu. V. Fedoseeva, K. V. Kubrak, L. G. Bulusheva, E. A. Maksimovskiy, D. A. Smirnov, A. K. Rebrov, and A. V. Okotrub. J. Phys.: Conf. Ser., 2018, 1105, 012132.

    Article  CAS  Google Scholar 

  17. Yu. V. Fedoseeva, D. V. Gorodetskiy, K. I. Baskakova, I. P. Asanov, L. G. Bulusheva, A. A. Makarova, I. B. Yudin, M. Yu. Plotnikov, A. A. Emelyanov, A. K. Rebrov, and A. V. Okotrub. Materials, 2020, 13, 219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. A. K. Rebrov, M. V. Isupov, A. Yu. Litvintsev, and V. F. Burov. J. Appl. Mech. Tech. Phys., 2018, 59, 771.

    Article  CAS  Google Scholar 

  19. A. K. Rebrov, A. A. Emel′yanov, M. Yu. Plotnikov, N. I. Timoshenko, and I. B. Yudin. Dokl. Ross. Akad. Nauk, 2020, 490, 1.

  20. R. K. Yafarov. Zh. Tekh. Fiz., 2007, 77, 79.

  21. M. B. Shavelkina, P. P. Ivanov, R. Kh. Amirov, and A. N. Bocharov. J. Struct. Chem., 2020, 61, 623.

    Article  CAS  Google Scholar 

  22. K. Ostrikov, E. C. Neyts, and M. Meyyappan. Adv. Phys., 2013, 62, 113.

    Article  CAS  Google Scholar 

  23. S. A. Solin and A. K. Ramnas. Phys. Rev. B, 1970, 1, 1687.

    Article  Google Scholar 

  24. J. Schwan, S. Ulrich, V. Batori, H. Ehrhardt, and S. R. P. Silva. J. Appl. Phys., 1996, 80, 440.

    Article  CAS  Google Scholar 

  25. P. K. Chu and L. Li. Mater. Chem. Phys., 2006, 96, 253.

    Article  CAS  Google Scholar 

  26. A. Dychalska, P. Popielarski, W. Franków, K. Fabisiak, K. Paprocki, and M. Szybowicz. Mater. Sci. – Pol., 2015, 33, 799.

    Article  CAS  Google Scholar 

  27. K. Yao, B. Dai, X. Tan, L. Yang, J. Zhao, V. Ralchenko, G. Shu, K. Liu, J. Hana, and J. Zhu. CrystEngComm, 2019, 21, 2502.

    Article  CAS  Google Scholar 

  28. Yu. V. Fedoseeva, G. A. Pozdnyakov, A. V. Okotrub, M. A. Kanygin, Yu. V. Nastaushev, O. Y. Vilkov, and L. G. Bulusheva. Appl. Surf. Sci., 2016, 385, 464.

    Article  CAS  Google Scholar 

  29. N. Wada, P. J. Gaczi, and A. Solin. J. Non-Cryst. Solids, 1980, 543, 35.

    Article  CAS  Google Scholar 

  30. S. R. Salis, D. J. Gardiner, M. Bowden, J. Savage, and D. Rodway. Diamond Relat. Mater., 1996, 5, 589.

    Article  CAS  Google Scholar 

  31. T. Hamilton, E. Z. Kurmaev, S. N. Shamin, P. Y. Detkov, S. I. Chukhaeva, and A. Moewes. Diamond Relat. Mater., 2007, 16, 350.

    Article  CAS  Google Scholar 

  32. Q. Yang, S. Yang, Y. S. Li, X. Lu, and A. Hirose. Diamond Relat. Mater., 2007, 16, 730.

    Article  CAS  Google Scholar 

  33. S. C. Ray, K. P. Krishna Kumar, H. M. Tsai, J. W. Chiou, C. W. Pao, W. F. Pong, M.-H. Tsai, B.-H. Wu, C.-R. Sheu, C.-C. Chen, F. C.-N. Hong, H.-H. Cheng, and A. Dalakyan. Thin Solid Films, 2008, 516, 3374.

    Article  CAS  Google Scholar 

  34. J. G. Buijnsters, R. Gago, and A. Redondo-Cubero, I. Jimenez. J. Appl. Phys., 2012, 112, 093502.

    Article  CAS  Google Scholar 

  35. Yu. V. Fedoseeva, L. G. Bulusheva, A. V. Okotrub, M. A. Kanygin, D. V. Gorodetskiy, I. P. Asanov, D. V. Vyalikh, A. P. Puzyr, and V. S. Bondar. Sci. Rep., 2015, 5, 9379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. D. Zhan, Z. Ni, W. Chen, L. Sun, Z. Luo, L. Lai, T. Yu, A. T. S. Wee, and Z. Shen. Carbon, 2011, 49, 1362.

    Article  CAS  Google Scholar 

  37. K. M. Popov, Yu. V. Fedoseeva, O. A. Kokhanovskaya, G. I. Razd′yakonova, D. A. Smirnov, L. G. Bulusheva, and A. V. Okotrub. J. Struct. Chem., 2017, 58(6), 1187.

    Article  CAS  Google Scholar 

Download references

Funding

The reported study was funded by RFBR, project number 18-29-19069.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. V. Fedoseeva.

Ethics declarations

The authors declare that they have no conflict of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fedoseeva, Y.V., Gorodetskiy, D.V., Makarova, A.A. et al. INFLUENCE OF THE TEMPERATURE OF MOLYBDENUM SUBSTRATES ON THE STRUCTURE OF DIAMOND COATINGS OBTAINED BY CHEMICAL VAPOR DEPOSITION FROM A HIGH-SPEED MICROWAVE PLASMA JET. J Struct Chem 62, 153–162 (2021). https://doi.org/10.1134/S0022476621010182

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476621010182

Keywords

Navigation