Skip to main content
Log in

DOUBLE GOLD(III)–ZINC(II) DI-ISO-BUTYLDITHIOCARBAMATO- CHLORIDO COMPLEXES OF THE COMPOSITION [Au(S2CNR2)2]2[Zn2Cl6] AND [Au(S2CNR2)2][Zn(S2CNR2)Cl2]: SYNTHESIS, STRUCTURAL ORGANIZATION, 13C CP-MAS NMR, AND THERMAL BEHAVIOR

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

The interaction of zinc(II) di-iso-butyldithiocarbamate with [AuCl4] anions in 2M HCl is studied. The result of chemisorption binding of gold(III) from a solution to the solid phase is the formation of double ionic complexes of the compositions [Au{S2CN(iso-C4H9)2}2]2[Zn2Cl6] (1) and [Au{S2CN(iso-C4H9)2}2][Zn{S2CN(iso-C4H9)2}Cl2] (2). The chemical identification of preparatively isolated crystalline compounds was performed by 13C CP-MAS NMR spectroscopy. According to single crystal X-ray diffraction data, structural units of complex 1 are a binuclear zinc anion and non-equivalent complex [Au{S2CN(iso-C4H9)2}2]+ cations: centrosymmetric A with the Au(1) atom and С – Au(3) and non-centrosymmetric В – Au(2). With the participation of secondary Cl⋯S bonds (3.2407 Å and 3.2756 Å), В cations and anions form supramolecular ionic pairs. The structure of 2 in turn involves the centrosymmetric gold(III) cation whose counterion is a mixed-ligand dithiocarbamato-chlorido anion of zinc(II). Pairs of non-equivalent secondary Cl⋯S bonds (3.2337 Å and 3.3151 Å) combine the ionic structural units of 2 into zigzag-like pseudo-polymeric chains along which the alternation of complex cations and anions is noted. Thermolysis of complexes in cationic and anionic parts is accompanied by the quantitative regeneration of bound gold along with the formation of ZnCl2 and ZnS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. *Among all zinc(II) dithiocarbamates that have been structurally characterized so far [30], the di-iso-butyldithiocarbamate complex has a unique character of constructing the crystal lattice with an alternation of monomeric [Zn{S2CN(iso-C4H9)2}2] and dimeric [Zn2{S2CN(iso-C4H9)2}4] molecular forms present in the 1:1 ratio [31].

  2. *Apart from non-centrosymmetric anions [40, 41], the examples of centrosymmetric [Zn2Cl6]2– anions have also been reported [42].

  3. **Examples of heteroleptic complexes simultaneously containing R2NC(S)S and Cl ligands have been known for zinc(II) [43-45], however, all these compounds are neutral and for the coordinative saturation of the central metal atom they additionally attach molecules of N,N′-donor bases (1,10-phenanthroline or 2,2′-bipyridine) are. Therefore, the structural analogues of the discussed anion are mainly copper(II) complexes of the composition [Cu(EtDtc)Cl2] [46].

  4. * The formation of metal sulfides during thermolysis of complexes with sulfur-containing ligands is substantiated in [51] from the standpoint of thermodynamics.

REFERENCES

  1. M. Bonamico, G. Mazzone, and A. Vaciago, L. Zambonelli. Acta Crystallogr., 1965, 19, 898.

    Article  CAS  Google Scholar 

  2. H. P. Klug. Acta Crystallogr., 1966, 21, 536.

    Article  Google Scholar 

  3. V. M. Agre and E. A. Shugam. J. Struct. Chem., 1972, 13(3), 614.

    Article  Google Scholar 

  4. M. J. Cox and E. R. T. Tiekink. Z. Kristallogr., 1999, 214, 184.

    Article  CAS  Google Scholar 

  5. A. V. Ivanov, E. V. Ivakhnenko, A. V. Gerasimenko, and W. Forsling. Russ. J. Inorg. Chem., 2003, 48, 45.

  6. E. Sathiyaraj, S. Tamilvanan, S. Thirumaran, and S. Ciattini. Polyhedron, 2017, 128, 133.

    Article  CAS  Google Scholar 

  7. K. Manar, C. Yadav, N. Tiwari, R. Singh, A. Yadav, M. G. B. Drew, and N. Singh. CrystEngComm, 2017, 19, 2660.

    Article  CAS  Google Scholar 

  8. A. Decken, R. A. Gossage, M. Y. Chan, C. S. Lai, and E. R. T. Tiekink. Appl. Organomet. Chem., 2004, 18, 101.

    Article  CAS  Google Scholar 

  9. M. Y. Chan, C. S. Lai, and E. R. T. Tiekink. Appl. Organomet. Chem., 2004, 18, 298.

    Article  CAS  Google Scholar 

  10. G. Hogarth, E.-J. C.-R. C. R. Rainford-Brent, and I. Richards. Inorg. Chim. Acta, 2009, 362, 1361.

  11. S. Kanchi, P. Singh, and K. Bisetty. Arab. J. Chem., 2014, 7, 11.

    Article  CAS  Google Scholar 

  12. P. J. Nieuwenhuizen. Appl. Catal. A, 2001, 207, 55.

    Article  CAS  Google Scholar 

  13. M. Cicotti. Compound Class: Alkylenebis(dithiocarbamates): Handbook of Residue Analytical Methods for Agrochemical. John Wiley & Sons: Chichester, England, 2003.

  14. D. C. Onwudiwe, Y. B. Nthwane, and A. C. Ekennia, E. Hosten. Inorg. Chim. Acta, 2016, 447, 134.

    Article  CAS  Google Scholar 

  15. M. Bozdag, F. Carta, D. Vullo, A. Akdemir, S. Isik, C. Lanzi, A. Scozzafava, E. Masini, and C. T. Supuran. Bioorg. Med. Chem., 2015, 23, 2368.

    Article  CAS  Google Scholar 

  16. Zia-ur-Rehman, S. Ibrahim, A. Khan, M. Imran, M. M. Naseer, I. Khan, A. Shah, M. N. Tahir, Muneeb-ur-Rahman, and I. Z. Awan. J. Coord. Chem., 2016, 69, 551.

    Article  CAS  Google Scholar 

  17. H.-U. Islam, A. Roffey, N. Hollingsworth, W. Bras, G. Sankar, N. H. De Leeuw, and G. Hogarth. Nanoscale Adv., 2020, 2, 798.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. R. Yadav, M. Trivedi, G. Kociok-Köhn, R. Chauhan, A. Kumar, and S. W. Gosavi. Eur. J. Inorg. Chem., 2016, 2016, 1013.

    Article  CAS  Google Scholar 

  19. A. Bharti, P. Bharati, U. K. Chaudhari, A. Singh, S. K. Kushawaha, N. K. Singh, and M. K. Bharty. Polyhedron, 2015, 85, 712.

    Article  CAS  Google Scholar 

  20. N. H. Abdullah, Z. Zainal, S. Silong, M. I. M. Tahir, K.-B. Tan, and S.-K. Chang. Mater. Chem. Phys., 2016, 173, 33.

    Article  CAS  Google Scholar 

  21. M. Hrubaru, D. C. Onwudiwe, and E. Hosten. J. Sulfur Chem., 2016, 37, 37.

    Article  CAS  Google Scholar 

  22. R. P. Singh, V. K. Maurya, B. Maiti, K. A. Siddiqui, and L. B. Prasad. J. Mol. Struct., 2019, 1198, 126912.

    Article  CAS  Google Scholar 

  23. A. V. Ivanov, O. V. Loseva, T. A. Rodina, A. V. Gerasimenko, and V. I. Sergienko. Dokl. Phys. Chem., 2013, 452, 223.

  24. O. V. Loseva and A. V. Ivanov. Russ. J. Inorg. Chem., 2014, 59, 1491.

  25. A. V. Ivanov, T. A. Rodina, and O. V. Loseva. Russ. J. Coord. Chem., 2014, 40, 875.

  26. A. V. Ivanov, O. V. Loseva, T. A. Rodina, and A. I. Smolentsev. Russ. J. Coord. Chem., 2017, 43, 512.

    Article  CAS  Google Scholar 

  27. O. V. Loseva, T. A. Rodina, and A. V. Ivanov. Russ. J. Coord. Chem., 2013, 39, 463.

  28. O. V. Loseva, T. A. Rodina, A. I. Smolentsev, and A. V. Ivanov. J. Struct. Chem., 2014, 55, 901.

  29. T. A. Rodina, O. V. Loseva, A. I. Smolentsev, and A. V. Ivanov. J. Struct. Chem., 2016, 42, 146.

  30. E. R. T. Tiekink. Crystals, 2018, 8, 292.

    Article  CAS  Google Scholar 

  31. A. V. Ivanov, E. V. Ivakhnenko, W. Forsling, and A. V. Gerasimenko. Dokl. Chem., 2003, 390, 162.

    Article  CAS  Google Scholar 

  32. A. Pines, M. G. Gibby, and J. S. Waugh. J. Chem. Phys., 1972, 56, 1776.

    Article  CAS  Google Scholar 

  33. W. L. Earl and D. L. VanderHart. J. Magn. Reson., 1982, 48, 35.

    Article  CAS  Google Scholar 

  34. C. R. Morcombe and K. W. Zilm. J. Magn. Reson., 2003, 162, 479.

    Article  CAS  PubMed  Google Scholar 

  35. APEX2 (version 1.08), SAINT (version 7.03), SADABS (version 2.11) and SHELXTL (version 6.12). Bruker AXS: Madison, WI, USA, 2004.

  36. T. A. Rodina, T. S. Filippova, A. V. Ivanov, A. S. Zaeva, O. N. Antzutkin, and O. V. Loseva. Russ. J. Inorg. Chem., 2012, 57, 1490.

    Article  CAS  Google Scholar 

  37. T. A. Rodina, O. V. Loseva, A. I. Smolentsev, O. N. Antzutkin, and A. V. Ivanov. Inorg. Chim. Acta, 2020, 508, 119630.

  38. A. Bondi. J. Phys. Chem., 1964, 68, 441.

    Article  CAS  Google Scholar 

  39. A. Bondi. J. Phys. Chem., 1966, 70, 3006.

    Article  CAS  Google Scholar 

  40. M. Ben Gzaiel, A. Oueslati, I. Chaabane, A. Bulou, F. Hlel, and M. Gargouri. Ionics, 2014, 20, 221.

    Article  CAS  Google Scholar 

  41. D. Sánchez-Roa, T. G. Santiago, M. Fernández-Millán, T. Cuenca, P. Palma, J. Cámpora, and M. E. G. Mosquera. Chem. Commun., 2018, 54, 12586.

    Article  CAS  Google Scholar 

  42. J. R. Miecznikowski, W. Lo, M. A. Lynn, B. E. O′Loughlin, A. P. DiMarzio, A. M. Martinez, L. Lampe, K. M. Foley, L. C. Keilich, G. P. Lisi, D. J. Kwiecien, C. M. Pires, W. J. Kelly, N. F. Kloczko, and K. N. Morio. Inorg. Chim. Acta, 2011, 376, 515.

    Article  CAS  Google Scholar 

  43. F. A. Mohamad, I. Baba, M. I. M. Tahir, and E. R. T. Tiekink. Acta Crystallogr., Sect. E, 2012, 68, m958.

    Article  CAS  Google Scholar 

  44. P. J. Rani, S. Thirumaran, and S. Ciattini. Spectrochim. Acta A, 2015, 137, 1164.

    Article  CAS  PubMed  Google Scholar 

  45. M. K. Bharty, R. K. Dani, P. Nath, A. Bharti, N. K. Singh, O. Prakash, R. K. Singh, and R. J. Butcher. Polyhedron, 2015, 98, 84.

    Article  CAS  Google Scholar 

  46. P. M. Solozhenkin, A. V. Ivanov, N. I. Kopitsya, and F. A. Shvengler. Zh. Neorg. Khim., 1985, 30, 416.

  47. L. Yang, D. R. Powel, and R. P. Houser. Dalton Trans., 2007, 9, 955.

    Article  PubMed  Google Scholar 

  48. N. W. Alcock. Adv. Inorg. Chem. Radiochem., 1972, 15, 1.

  49. I. Haiduc and F. T. Edelmann. Supramolecular Organometallic Chemistry. Wiley-VCH: Weinheim, 1999.

    Book  Google Scholar 

  50. Yu. V. Bakhtiyarova, A. F. Aksunova, I. V. Galkina, V. I. Galkin, O. A. Lodochnikova, and O. N. Kataeva. Russ. Chem. Bull., 2016, 65, 1313.

    Article  CAS  Google Scholar 

  51. G. A. Razuvaev, G. V. Almazov, G. A. Domrachev, M. N. Zhilina, and N. V. Karyakin. Dokl. Akad. Nauk SSSR, 1987, 294, 141.

  52. R. A. Lidin, L. L. Andreeva, and V. A. Molochko. Spravochnik po Neorganicheskoi Khimii (Handbook in Inorganic Chemistry) [in Russian]. Khimiya: Moscow, 1987.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Ivanov.

Ethics declarations

The authors declare that they have no conflict of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodina, T.A., Loseva, O.V. & Ivanov, A.V. DOUBLE GOLD(III)–ZINC(II) DI-ISO-BUTYLDITHIOCARBAMATO- CHLORIDO COMPLEXES OF THE COMPOSITION [Au(S2CNR2)2]2[Zn2Cl6] AND [Au(S2CNR2)2][Zn(S2CNR2)Cl2]: SYNTHESIS, STRUCTURAL ORGANIZATION, 13C CP-MAS NMR, AND THERMAL BEHAVIOR. J Struct Chem 62, 123–136 (2021). https://doi.org/10.1134/S0022476621010157

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476621010157

Keywords

Navigation