Skip to main content
Log in

ANALYSIS OF LOCALIZED ORBITALS IN AZABORA DERIVATIVES OF [8] ANNULENE: IN THE VIEWPOINT OF AROMATICITY AND INDUCED RING CURRENTS

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

The electron density distributions among a series of [8] annulene (both ions and molecules) and its azabora derivatives, including its ions [BnNnC(8–2n) H8 (n = 1, 2, 3, 4)], are investigated by NBO and NMR analyses. The (4n+2)π and 4 systems (Hückel′s Rule) in these compounds are discussed via the localized orbital localization and electron localized function. A diatropic ring current (aromatic) and paratropic current (anti-aromatic) are distinguished. The natural hybrid orbital (NHO) direction and bond bending deviations from the line of nuclear centers are exhibited for understanding the states of π and σ orbitals. For \({{\text{B}}_{2}}{{\text{N}}_{\text{2}}}{{\text{C}}_{4}}\text{H}_{8}^{2-}\), \({{\text{B}}_{\text{4}}}{{\text{N}}_{\text{4}}}\text{H}_{8}^{2-}\), and \({{\text{B}}_{\text{4}}}{{\text{N}}_{\text{4}}}\text{H}_{8}^{2+}\) NBO calculations reveal that these structures are the dominant Lewis structures. In this work, for each NAO functions (core, valence, or Rydberg) the orbital occupancy and the orbital energies are discussed. In addition, the nucleus-independent chemical shifts and statistical nucleus independent chemical shifts confirm the amounts of aromaticity and antiaromaticity in these rings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

REFERENCES

  1. P. G. Wenthold, D. A. Hrovat, and W. T. Borden. Science, 1996, 272, 1456–1459.

  2. T. Nishinaga, T. Ohmae, and M. Iyoda. Symmetry, 2010, 2, 76–97.

  3. R. Naor and Z. Luz. J. Chem. Phys., 1982, 76, 5662–5664.

  4. T. A. Keith and R. F. W. Bader. Chem. Phys. Lett., 1992, 194(1), 1–8, DOI: 10.1016/0009-2614(92)85733-Q.

  5. J. L. Andrés, O. Castaño, A. Morreale, R. Palmeiro, and R. Gomperts. J. Chem. Phys., 1998, 108, 203–207.

  6. C. Tokizaki, T. Yoshida, and T.Takayanagi. Comput. Theor. Chem., 2017, 1112, 20–26.

  7. R. Willstätter and E. Waser. Ber. Dtsch. Chem. Ges., 1911, 44(3), 3423–3445.

  8. O. Schlichting, K. Klager, and T. Toepel. Liebigs Ann. Chem., 1948, 560(1), 1–92.

  9. W. J. I. Fernández, Y. Mo, and P. v. R. Schleyer. J. Chem. Theor. Comput., 2012, 8, 1280–1287.

  10. D. A. Hrovat and W. T. Borden. J. Am. Chem. Soc., 1992, 114, 5879–5881.

  11. C. Gellini and P. R. Salvi. Symmetry, 2010, 2, 1846–1924.

  12. A. Schild and B. Paulus. J. Comput. Chem., 2013, 34, 1393–1397.

  13. C. D. Stevenson, E. C. Brown, D. A. Hrovat, and W. T. Borden. J. Am. Chem. Soc., 1998, 120, 8864–8867.

  14. Z. Badri and C. Foroutan-Nejad. Phys. Chem. Chem. Phys., 2016, 18(17), 11693–11699, DOI: 10.1039/c5cp05222j.

  15. T. A. Keith and R. F. W. Bader. Chem. Phys. Lett., 1993, 210(1), 223–231, DOI: 10.1016/0009-2614(93)89127-4.

  16. T. A. Keith and R. F. W. Bader. J. Chem. Phys., 1993, 99(5), 3669–3682, DOI: 10.1063/1.466165.

  17. T. A. Keith. Chem. Phys., 1996, 213(1), 123–132, DOI: 10.1016/S0301-0104(96)00272-8.

  18. T. A. Keith and R. F. W. Bader. Can. J. Chem., 1996, 74(2), 185–200, DOI: 10.1139/v96-022.

  19. F. London. J. Phys. Radium, 1937, 8, 397–409.

  20. L. Pauling. J. Chem. Phys., 1936, 4, 673–677.

  21. J. A. Pople. J. Chem. Phys., 1956, 24, 1111.

  22. P. v. R. Schleyer, C. Maerker, A. Dransfeld, H. Jiao, and N. J. R. E. Hommes. J. Am. Chem. Soc., 1996, 118, 6317–6318.

  23. A. Soncini, P. W. Fowler, and L. W. Jenneskens. Phys. Chem. Chem. Phys., 2004, 6, 277–284.

  24. F. A. L. Anet and D. J. O′Leary. Concepts Magn. Reson., 1992, 4, 35.

  25. U. Haeberlen. High Resolution NMR in Solids: Selective Averaging. Advances in Magnetic Resonance Supplement 1. Academic Press: New York, 1976.

  26. M. Mehring. Principles of High Resolution NMR in Solids. Springer: Berlin, 1983.

  27. NMR Basic Principles and Progress / Eds. P. Diehl, E. Fluck, H. Günther, R. Kosfeld, and J. Seelig. Vol. 15. Springer: Berlin, 1978.

  28. J. Herzfeld and A. E. Berger. J. Chem. Phys., 1980, 73, 6021.

  29. R. F. W. Bader. Atoms in Molecule: A Quantum Theory. Oxford Univ. Press: Oxford, 1990.

  30. A. D. Becke and K. E. Edgecombe. J. Chem. Phys., 1990, 92, 5397.

  31. A. Savin, O. Jepsen, J. Flad, O. K. Andersen, H. Preuss, and H. G. V. Schnering. Angew. Chem., Int. Ed. Engl., 1992, 31, 187.

  32. A. D. Becke. J. Mol. Struct.: THEOCHEM, 2000, 527, 51–56.

  33. W. Kohn and L. J. Sham. Phys. Rev. A, 1965, 140, 1133–1138.

  34. T. Lu and F. Chen. J. Mol. Graphics Modell., 2012, 38, 314–323.

  35. T. Lu and F. A. Chen. J. Comput. Chem., 2012, 33, 580–592.

  36. B. H. Besler, K. M. Merz, and P. A. Kollman. J. Comput. Chem., 1990, 11, 431–439.

  37. L. E. Chirlian and M. M. Francl. J. Comput. Chem., 1987, 8, 894–905.

  38. F. Martin and H. Zipse. J. Comput. Chem., 2005, 26, 97–105.

  39. M. Monajjemi, V.S. Lee, M. Khaleghian, B. Honarparvar, and F. Mollaamin. J. Phys. Chem. C, 2010, 114, 15315.

  40. M. Monajjemi and M. Khaleghian. J. Clust. Sci., 2011, 22, 673–692.

  41. M. Monajjemi. Struct. Chem., 2012, 23, 551.

  42. M. Monajjemi and J. E. Boggs. J. Phys. Chem. A, 2013, 117, 1670–1684.

  43. M. Monajjemi, W. J. Robert and J. E. Boggs. Chem. Phys., 2014, 433, 1–11.

  44. F. Mollaamin, T. T. Pham, D. M. T. Dang, M. Monajjemi, and C. M. Dang. Biointerface Res. Appl. Chem., 2019, 9(4), 4050–4059.

  45. M. Monajjemi. Theor. Chem. Acc., 2015, 134, 1668–1669.

  46. M. Monajjemi. J. Mol. Model., 2014, 20, 2507.

  47. M. Monajjemi and N. T. Mohammadian. J. Comput. Theor. Nanosci., 2015, 12, 4895–4914.

  48. A. A. Frost and B. Musulin. J. Chem. Phys., 1953, 21, 572.

  49. A. Matsuura and K. Komatsu. J. Am. Chem. Soc., 2001, 123, 1768–1769.

  50. A. J. Bridgeman. Polyhedron, 1998, 17, 2279–2288.

  51. E. W. Stout and P. Politzer. Theor. Chim. Acta, 1968, 12(5), 379–386.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Monajjemi.

Ethics declarations

The author declares that he has no conflict of interests.

Supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Monajjemi, M. ANALYSIS OF LOCALIZED ORBITALS IN AZABORA DERIVATIVES OF [8] ANNULENE: IN THE VIEWPOINT OF AROMATICITY AND INDUCED RING CURRENTS. J Struct Chem 61, 1551–1567 (2020). https://doi.org/10.1134/S0022476620100078

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476620100078

Keywords

Navigation