Skip to main content
Log in

Molecular Structural Properties of [n]-Annulene (n = 8, 10, 12, 14) and its Boron Nitride Derivatives: Analysis of NMR, NBO, ELF and PDI

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Due to the importance of structural properties of annulene in physical and inorganic chemistry, the trajectory of the NBO to MO evolution can be written as natural atomic orbitals (NAO) → natural hybrid orbital (NHO) → natural bond orbital (NBO) → natural semi-localized MO (NLMO) → MO. The electron density distribution in this [n]-annulene series (both ions and molecules) (n = 8, 10, 12, 14) is investigated by NMR, NBO, ELF, FLU, and PDI analyses. The (4n+2)π and also 4nπ systems (Hückel’s rule) on variants of those compounds via the localized orbital localization (LOL) and electron localized function (ELF) are discussed, and a diatropic ring current (aromatic) is also distinguished for some other paratropic currents (anti-aromatic). The NHO direction and bond bending deviations from the line of nuclear centers are exhibited for understanding the situation of π and σ orbitals. In this work, for each NAO function, core, valence, or Rydberg, the orbital occupancy and the orbital energies are discussed. In addition, nucleus independent chemical shifts (NICSs) and statistical nucleus chemical shifts (S-NICSs) confirm the aromaticity and anti-aromaticity amounts in those rings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Willstätter, E. Waser, and R. Willstätter. Ber. Dtsch. Chem. Ges., 1911, 44(3), 3423–3445.

    Google Scholar 

  2. J. F. M. Oth. Pure Appl. Chem., 1971, 25, 573–622.

    CAS  Google Scholar 

  3. J. I. Wu, I. Fernández, Y. Mo, and P. V. R. Schleyer. J. Chem. Theory Comput., 2012, 8, 1280–1287.

    CAS  PubMed  Google Scholar 

  4. R. Naor and Z. Luz. J. Chem. Phys., 1982, 76, 5662–5664.

    CAS  Google Scholar 

  5. J. L. Andrés, O. Castaño, A. Morreale, R. Palmeiro, and R. Gomperts. J. Chem. Phys., 1998, 108, 203–207.

    Google Scholar 

  6. T. Nishinaga, T. Ohmae, and M. Iyoda. Symmetry, 2010, 2, 76–97.

    CAS  Google Scholar 

  7. C. Gellini and P. R. Salvi. Symmetry, 2010, 2, 1846–1924.

    CAS  Google Scholar 

  8. P. G. Wenthold, D. A. Hrovat, W. T. Borden, and W. C. Lineberger. Science, 1996, 272, 1456–1459.

    CAS  PubMed  Google Scholar 

  9. A. Schild and B. Paulus. J. Comput. Chem., 2013, 34, 1393–1397.

    CAS  PubMed  Google Scholar 

  10. D. A. Hrovat and W. T. Borden. J. Am. Chem. Soc., 1992, 114, 5879–5881.

    CAS  Google Scholar 

  11. C. D. Stevenson, E. C. Brown, D. A. Hrovat, and W. T. Borden. J. Am. Chem. Soc., 1998, 120, 8864–8867.

    CAS  Google Scholar 

  12. A. Schild and B. J. Paulus. J. Comput. Chem., 2013, 34, 1393–1397.

    CAS  PubMed  Google Scholar 

  13. T. Yoshida and C. Tokizaki. Chem. Phys. Lett., 2015, 634, 134–139.

    CAS  Google Scholar 

  14. E. Steiner and P. W. Fowler. J. Phys. Chem. A, 2001, 105, 9553–9562.

    CAS  Google Scholar 

  15. E. Steiner, P. W. Fowler, and R. W. A. Havenith. J. Phys. Chem. A, 2002, 106, 7048–7056.

    CAS  Google Scholar 

  16. F. London. J. Phys. Radium., 1937, 8, 397–409.

    CAS  Google Scholar 

  17. L. Pauling. J. Chem. Phys., 1936, 4, 673–677.

    CAS  Google Scholar 

  18. J. A. Pople. J. Chem. Phys., 1956, 24, 1111.

    CAS  Google Scholar 

  19. P. von R. Schleyer, C. Maerker, A. Dransfeld, H. Jiao, and N. J. R. van Eikema Hommes. J. Am. Chem. Soc., 1996, 118, 6317–6318.

    Google Scholar 

  20. A. Soncini, P. W. Fowler, and L. W. Jenneskens. Phys. Chem. Chem. Phys., 2004, 6, 277–284.

    CAS  Google Scholar 

  21. F. A. L. Anet and D. J. O’Leary. Concepts Magn. Reson., 1992, 4, 35.

    Google Scholar 

  22. U. Haeberlen. In: Advances in Magnetic Resonance. Suppl. 1. Academic Press: New York, 1976.

    Google Scholar 

  23. M. Mehring. High Resolution NMR Spectroscopy in Solids, 2nd. Ed. Springer Verlag: Berlin, 1983.

    Google Scholar 

  24. NMR Basic Principles and Progress./Eds. P. Diehl, E. Fluck, and R. Kosfeld. Springer Verlag: Berlin, 1978, 15.

    Google Scholar 

  25. R. K. Harris, E. D. Becker, S. M. Cabral de Menezes, P. Granger, R. E. Hoffman, and K. W. Zilm. Ann. Magn. Reson., 2008, 7, 1.

    Google Scholar 

  26. J. Herzfeld and A. E. Berger. J. Chem. Phys., 1980, 73, 6021.

    CAS  Google Scholar 

  27. R. F. W. Bader. Atoms in Molecule: A quantum Theory. Oxford Univ. Press: Oxford, 1990.

    Google Scholar 

  28. A. D. Becke and K. E. Edgecombe. J. Chem. Phys., 1990, 92, 5397.

    CAS  Google Scholar 

  29. A. Savin, O. Jepsen, J. Flad, O. K. Andersen, H. Preuss, and H. G. von Schnering. Angew. Chem., Int. Ed. Engl., 1994, 31(2), 187.

    Google Scholar 

  30. A. D. Becke. J. Mol. Struct.: THEOCHEM, 2000, 527, 51.

    Google Scholar 

  31. H. Jacobsen. Can. J. Chem., 2008, 86(7), 695–702.

    CAS  Google Scholar 

  32. W. Kohn and L. J. Sham. J. Phys. Rev., 1965, 140, A1133–1138.

    Google Scholar 

  33. J. P. Perdew, K. Burke, and Ernzerhof. Phys. Rev. Lett., 1996, 77, 3865–3868.

    CAS  Google Scholar 

  34. T. Lu and F. Chen. J. Mol. Graph. Model., 2012, 38, 314–323.

    PubMed  Google Scholar 

  35. T. Lu and F. Chen. J. Comp. Chem., 2012, 33, 580–592.

    Google Scholar 

  36. B. H. Besler, K. M. Merz, and P. A. Kollman. J. Comp. Chem., 1990, 11, 431–439.

    CAS  Google Scholar 

  37. L. E. Chirlian and M. M. Francl. J. Comp. Chem., 1987, 8, 894–905.

    CAS  Google Scholar 

  38. F. Martin and H. Zipse. J. Comp. Chem., 2005, 26, 97–105.

    CAS  Google Scholar 

  39. M. Monajjemi, V. S. Lee, M. Khaleghian, B. Honarparvar, and F. Mollaamin. J. Phys. Chem. C, 2010, 114, 15315.

    CAS  Google Scholar 

  40. M. Monajjemi and M. Khaleghian. J. Clust. Sci., 2011, 22, 673–692.

    CAS  Google Scholar 

  41. M. Monajjemi. J. Struct. Chem., 2012, 23, 551.

    CAS  Google Scholar 

  42. M. Monajjemi and J. E. Boggs. J. Phys. Chem. A.2013, 117, 1670–1684.

    CAS  PubMed  Google Scholar 

  43. M. Monajjemi, W. J. Robert, and J. E. Boggs. Chem. Phys., 2014, 433, 1–11.

    CAS  Google Scholar 

  44. M. Monajjemi, M. Khosravi, B. Honarparvar, and F. Mollaamin. Int. J. Quantum Chem., 2011, 111, 2771–2777.

    CAS  Google Scholar 

  45. M. Monajjemi. Theor. Chem. Acc., 2015, 134(77), 1–22.

    CAS  Google Scholar 

  46. M. Monajjemi. J. Mol. Model., 2014, 20, 2507.

    PubMed  Google Scholar 

  47. A. J. Bridgeman. Polyhedron, 1998, 17, 2279–2288.

    CAS  Google Scholar 

  48. M. Monajjemi and N. T. Mohammadian. J. Comput. Theor. Nanosci., 2015, 12, 4895–4914.

    CAS  Google Scholar 

  49. A. A. Frost and B. A. Musulin. J. Chem. Phys., 1953, 21, 572.

    CAS  Google Scholar 

  50. A. Matsuura and K. Komatsu. J. Am. Chem. Soc., 2001, 123, 1768–1769.

    CAS  PubMed  Google Scholar 

  51. E. W. Stout and P. Politzer. Theor. Chim. Acta, 1968, 12(5), 379–386.

    CAS  Google Scholar 

Download references

Acknowledgments

Our common idea and preliminary discussion of this work refer to the duration of my sabbatical collaborating with professor James E. Boggs (who passed away) in the Institute for Theoretical Chemistry, Department of Chemistry and Biochemistry, The University of Texas at Austin, Austin, Texas, United States that reminds me his memory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Monajjemi.

Additional information

Conflict of Interests

The authors declare that they have no conflict of interests.

Text © The Author(s), 2020, published in Zhurnal Strukturnoi Khimii, 2020, Vol. 61, No. 2, pp. 221–238.

Supplementary materials

10947_2020_1351_MOESM1_ESM.pdf

SUPPLEMENTARY MATERIALS TO: MOLECULAR STRUCTURAL PROPERTIES OF [n]-ANNULENE (n = 8, 10, 12, 14) AND ITS BORON NITRIDE DERIVATIVES: ANALYSIS OF NMR, NBO, ELF AND PDI

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Monajjemi, M., Mollaamin, F. Molecular Structural Properties of [n]-Annulene (n = 8, 10, 12, 14) and its Boron Nitride Derivatives: Analysis of NMR, NBO, ELF and PDI. J Struct Chem 61, 207–224 (2020). https://doi.org/10.1134/S0022476620020055

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476620020055

Keywords

Navigation