Skip to main content
Log in

ELECTRONIC ABSORPTION SPECTRA AND INTERMOLECULAR HYDROGEN BONDING IN MESOGEN–NONMESOGEN SYSTEMS

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

The TD-DFT/B97-D/6-311G** method is used to calculate the electronic absorption spectra of АХА supramolecules with intermolecular hydrogen bonds (HBs), where А is 4-n-propoxycinnamic acid, Х is a nonmesogen molecule with bifunctional HB acceptors. Nonmesogens Х (B, C, D, E) consist of two pyridyl fragments connected by bridging groups of different natures: 4,4′-bipyridine (В), 1,2-bis(4-pyridyl)ethane (С), 1,2-bis(4-pyridyl)ethylene (D), 4,4′-azopyridine (Е). It is shown that the introduction of bridging groups (–CН2–CН2–, –CН=СН–, –N=N) significantly affects the energy of frontier orbitals and electronic absorption spectra (EAS) of nonmesogens Х in the near-UV region. The EAS of two structural units AВA, AA, which may be formed due to the self-assembly in two-component mesogen А–nonmesogen В systems, are compared. Due to hydrogen bonds (O–H⋯N and O–H⋯O), having different types and strengths in these complexes, the high-intensity band shifts to shorter wavelengths in complex АВА and to longer wavelengths in complex АА with respect to the λ = 333 nm band of monomer А. It is shown that EAS of hydrogen-bonded complexes АХА are not superpositions of EAS of individual components. The spectra show electronic transitions related to charge transfer between the components of the complexes. Using nonmesogens Х of different nature in supramolecules АХА will allow one to change purposefully their electro-optical properties and to achieve intense absorption in particular regions of UV spectra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

REFERENCES

  1. S. M. Kelly M. and O′Neill. In: Handbook of Advanced Electronic and Photonic Materials and Devices / Ed. H. S. Nalwa. Vol. 7. Academic Press, 2001, 1–66, DOI: 10.1016/B978-012513745-4/50057-3.

  2. I. C. Khoo and S. T. Wu. Electro-Optical Properties of Liquid Crystals. In: Optics and Nonlinear Optics of Liquid Crystals. World Scientific: Singapore. 1993, 100–258, DOI: 10.1142/9789814295031_0002.

  3. V. A. Burmistrov, S. A. Kuvshinova, and O. I. Koifman. Russ. Chem. Rev., 2016, 85(2), 156, DOI: 10.1070/RCR4477.

  4. W.-C. Choi, C.-S. Ha, D. Im, and W.-K. Lee. Mol. Cryst. Liq. Cryst., 2019, 688(1), 29, DOI: 10.1080/15421406.2019.1651065.

  5. S. Sakagami and M. Nakamizo. Bull. Chem. Soc. Japan, 1984, 57(4), 1157, DOI: 10.1246/bcsj.57.1157.

  6. Z. Witkiewicz, J. Oszczudłowski, and M. Repelewicz. J. Chromatogr. A, 2005, 1062(2), 155, DOI: 10.1016/j.chroma.2004.11.042.

  7. H. Grajek, Z. Witkiewicz, M. Purchała, and W. Drzewiński. Chromatographia, 2016, 79(19–20), 1217, DOI: 10.1007/s10337-016-3154-5.

  8. C. M. Paleos and D. Tsiourvas. Liq. Cryst., 2001, 28(8), 1127, DOI: 10.1080/02678290110039516.

  9. T. Kato, N. Mizoshita, and K. Kishimoto. Angew. Chem., Int. Ed., 2006, 45, 38, DOI: 10.1002/anie.200501384.

  10. N. I. Giricheva, M. S. Fedorov, K. E. Shpilevaya, S. A. Syrbu, and O. Y. Ditsina. J. Struct. Chem., 2017, 58(1), 9, DOI: 10.1134/s0022476617010024.

  11. M. D. Miranda, F. V. Chávez, T. M. R. Maria, M. E. S. Eusebio, P. J. Sebastião, and M. R. Silva. Liq. Cryst., 2014, 41(12), 1743, DOI: 10.1080/02678292.2014.950048.

  12. S. Ebenezer and P. T. Muthiah. J. Mol. Struct., 2011, 990, 281, DOI: 10.1016/j.molstruc.2011.02.004.

  13. T. Kato, M. J. F. Jean, G. W. Paul, T. Saito, T. Uryu, A. Fujishima, Ch. Jin, and F. Kaneuchi. Chem. Mater., 1993, 5(8), 1094, DOI: 10.1021/cm00032a012.

  14. H. Xu, N. Kang, P. Xie, and R. Zhang. Mol. Cryst. Liq. Cryst., 2002, 373(1), 119, DOI: 10.1080/10587250210537.

  15. Y.-S. Kang, H. Kim, and W.-C. Zin. Liq. Cryst., 2001, 28(5), 709, DOI: 10.1080/02678290010025855.

  16. S. A. Syrbu, M. S. Fedorov, N. I. Giricheva, V. V. Novikov, I. A. Filippov, and M. R. Kiselev. J. Mol. Liq., 2020, DOI: 10.1016/j.molliq.2020.112796.

  17. N. I. Giricheva, M. S. Fedorov, S. A. Surby, K. E. Shpilevaya, E. M. Chernova, and M. R. Kiselev. Liq. Cryst. Their Appl., 2017, 17, 41, DOI: 10.18083/LCAppl.2017.4.41.

  18. Cambridge Crystallographic Date Centre (CCDC). http://www.ccdc.com.ac.uk.

  19. Y. Tabuchi, K. Gotoh, and H. Ishida. Acta Crystallogr., Sect. E: Crystallogr. Commun., 2015, 71, 1290, DOI:10.1107/S2056989015018435.

  20. Y. Tabuchi, K. Gotoh, and H. Ishida. Acta Crystallogr., Sect. E: Crystallogr. Commun., 2015, 71, 1340, DOI: 10.1107/S2056989015019349.

  21. Y. Tabuchi, K. Gotoh, and H. Ishida. Acta Crystallogr., Sect. E: Crystallogr. Commun., 2016, 72, 1666, DOI: 10.1107/S2056989016017138.

  22. A. Mukherjee and G. R. Desiraju. Cryst. Growth Des., 2014, 14(3), 1375, DOI:10.1021/cg401851z.

  23. P. Ravat, S. S. Lekshmi, S. N. Biswas, P. Nandy, and S. Varughese. Cryst. Growth Des., 2015, 15, 2389, DOI:10.1021/acs.cgd.5b00183.

  24. S. Kraft, E. Hanuschek, R. Beckhaus, D. Haase, and W. Saak. Chem. – Eur. J., 2005, 11(3), 969, DOI: 10.1002/chem.200400880.

  25. S. Ide, N. Karacan, and Y. Tufan. Acta Crystallogr., Sect. C: Cryst. Struct. Commun., 1995, 51(11), 2304, DOI:10.1107/s0108270195005221.

  26. J. Vansant, G. Smets, J. P. Declercq, G. Germain, and M. Van Meerssche. J. Org. Chem., 1980, 45(9), 1557, DOI: 10.1021/jo01297a002.

  27. N. I. Giricheva, S. A. Syrbu, K. E. Bubnova, M. S. Fedorov, M. R. Kiselev, and G. V. Girichev. J. Mol. Liq., 2019, 277, 833, DOI: 10.1016/j.molliq.2019.01.029.

  28. R. Bauernschmitt and R. Ahlrichs. Chem. Phys. Lett., 1996, 256, 454, DOI: 10.1016/0009-2614(96)00440-X.

  29. M. E. Casida, C. Jamorski, K. C. Casida, and D. R. Salahub. J. Chem. Phys., 1998, 108, 4439, DOI: 10.1063/1.475855.

  30. C. Adamo and D. Jacquemin. Chem. Soc. Rev., 2013, 42, 845, DOI: 10.1039/c2cs35394f.

  31. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox. Gaussian 09. Gaussian: Wallingford, CT, 2009.

  32. S. Grimme. J. Comput. Chem., 2006, 27, 1787, DOI: 10.1002/jcc.20495.

  33. A. D. McLean and G. S. Chandler. J. Chem. Phys., 1980, 72, 5639, DOI: 10.1063/1.438980.

  34. Bio-Rad Laboratories, Inc. SpectraBase. http://spectrabase.com.

  35. H. J. Den Hertog, C. H. Henkens, and J. H. van Roon. Recl. Trav. Chim. Pays-Bas, 1952, 71(11), 1145, DOI: 10.1002/recl.19520711113.

  36. W.-S. Zou, Q.-J. Shen, Y. Wang, and W.-J. Jin. Chem. Res. Chin. Univ., 2008, 24(6), 712, DOI: 10.1016/S1005-9040(09)60012-X.

  37. N. Dannenbauer, P. R. Matthes, and K. Müller-Buschbaum. Dalton Trans., 2016, 45(15), 6529, DOI: 10.1039/c6dt00152a.

Download references

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation, project FZZM-2020-0006; K.E. Bubnova thanks the Russian Foundation for Basic Research for financial support (grant No. 19-33-90046).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. I. Giricheva.

Ethics declarations

The authors declare that they have no conflict of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giricheva, N.I., Bubnova, K.E., Chernova, E.M. et al. ELECTRONIC ABSORPTION SPECTRA AND INTERMOLECULAR HYDROGEN BONDING IN MESOGEN–NONMESOGEN SYSTEMS. J Struct Chem 61, 1530–1540 (2020). https://doi.org/10.1134/S0022476620100054

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476620100054

Keywords

Navigation