Skip to main content
Log in

Structural and Mössbauer Studies of Sr1.5Ca1.5Fe2.25Mo0.75O9−δ and Sr1.92Ca1.08Fe2.04W0.96O9−δ Double Perovskites

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Sr1.50Ca1.50Fe2.25Mo0.75O9−δ and Sr1.92Ca1.08Fe1.04W0.96O9−δ double perovskites are synthesized in the polycrystalline form by a solid-state reaction route in air and studied at room temperature using the of PXRD, Raman and Mössbauer spectroscopy techniques. The Rietveld refinement analysis reveals that both compounds adopt a tetragonal system with the space group I4/m and lattice parameters a = b = 5.5176(1) Å and c = 7.8065(2) Å for Sr1.50Ca1.50Fe2.25Mo0.75O9−δ and a = b = 5.5453(1) Å and c = 7.8388(1) Å for Sr1.92Ca1.08Fe2.04W0.96O9−δ. Raman spectra are consistent with the group theoretical analysis predicted for tetragonal symmetry I4/m (point group C 54h ). 57Fe Mössbauer spectra recorded at room temperature show a paramagnetic behavior for Sr1.50Ca1.50Fe2.25Mo0.75O9−δ, and magnetic ordering for Sr1.92Ca1.08Fe2.04W0.96O9−δ. The isomer shift (δ) and quadrupole splitting (Δ) values are characteristic of high-spin Fe3+ in a distorted octahedral coordination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. I. Kobayashi, T. Kimura, H. Sawada, K. Terakura, and Y. Tokura. Nature, 1998, 395, 677–680.

    Article  CAS  Google Scholar 

  2. M. García-Hernández, J. L. Martínez, M. J. Martínez-Lope, M. T. Casais, and J. A. Alonso. Phys. Rev. Lett., 2001, 86, 2443.

    Article  CAS  Google Scholar 

  3. W. R. Branford, S. K. Clowes, Y. V. Bugoslavsky, Y. Miyoshi, and L. F. Cohen. J. Appl. Phys., 2003, 3(7), 4714–4716.

    Article  CAS  Google Scholar 

  4. J. B. Philipp, P. Majewski, L. Alff, A. Erb, R. Gross, T. Graf, M. S. Brandt, J. Simon, T. Walther, W. Mader, D. Topwal, and D. D. Sarma. Phys. Rev., 2003, B68, 144431.

    Article  CAS  Google Scholar 

  5. F. Sher and J. P. Attfield. Solid State Sci., 2006, 8, 277–279.

    Article  CAS  Google Scholar 

  6. R. I. Dass and J. B. Goodenough. Phys. Rev., 2001, B63, 064417.

    Article  CAS  Google Scholar 

  7. M. S. Augsburger, M. C. Viola, J. C. Pedregosa, R. E. Carbonio, and J. A. Alonso. J. Mater. Chem., 2006, 3(43), 4235–4242.

    Article  CAS  Google Scholar 

  8. A. El Hachmi, B. Manoun, Y. Tamraoui, F. Mirinioui, R. Abkar, M. A. El Aamrani, I. Saadoune, M. Sajieddine, and P. Lazor. J. Mol. Struct., 2017, 1141, 484–494.

    Article  CAS  Google Scholar 

  9. D. Serrate, J. M. De Terresa, and M. R. Ibarra. J. Phys. Condens. Matter, 2007, 19, 023201.

    Article  CAS  Google Scholar 

  10. M. C. Viola, J. A. Alonso, J. C. Pedregosa, and R. E. Carbonio. Eur. J. Inorg. Chem., 2005, 3(8), 1559–1564.

    Article  CAS  Google Scholar 

  11. S. A. Ivanov, S.-G. Eriksson, R. Tellgren, and H. Rundlof. Mater. Res. Bull., 2001, 36, 2585–2596.

    Article  CAS  Google Scholar 

  12. B. Manoun, S. Benmokhtar, L. Bih, M. Azrour, A. Ezzahi, A. Ider, M. Azdouz, H. Annersten, and P. Lazor. J. Alloys Compd., 2011, 509, 66–71.

    Article  CAS  Google Scholar 

  13. A. El Hachmi, Y. Tamraoui, B. Manoun, R. Haloui, M. A. Elaamrani, I. Saadoune, L. Bih, and P. Lazor. Powder Diffr., 2018, 3(2), 134–140.

    Article  CAS  Google Scholar 

  14. J. Rodriguez-Carvajal. In: Collected Abstracts of Powder Diffraction Meeting. Toulouse, France, 1990, 127.

  15. T. Roisnel and J. Rodriguez-Carvajal. Mater. Sci. Forum, 2001, 118, 378–381.

    Google Scholar 

  16. A. Boultif and D. Louër. J. Appl. Crystallogr., 1991, 24, 987–993.

    Article  CAS  Google Scholar 

  17. H. M. Rietveld. J. Appl. Crystallogr., 1969, 2, 65–71.

    Article  CAS  Google Scholar 

  18. P. M. Woodward. Acta Crystallogr., 1997, B53, 32–43.

    Article  CAS  Google Scholar 

  19. R. D. Shannon. Acta Crystallogr., 1976, A32, 751–767.

    Article  CAS  Google Scholar 

  20. M. E. Fleet. Mineral. Mag., 1976, 40, 531–533.

    Article  Google Scholar 

  21. E. Kroumova, M. I. Aroyo, J. M. Perez-Mato, A. Kirov, C. Capillas, S. Ivantchev, and H. Wondratschek. Phase Transit., 2003, 76, 155–170.

    Article  CAS  Google Scholar 

  22. E. N. Silva, I. Guedes, A. P. Ayala, C. A. López, M. S. Augsburger, M. del C. Viola, and J. C. Pedregosa. J. Appl. Phys., 2010, 107, 043512.

    Article  CAS  Google Scholar 

  23. F. Menil. J. Phys. Chem. Solids, 1985, 3(7), 763.

    Article  Google Scholar 

  24. M. Del, C. Viola, M. S. Augsburger, R. M. Pinacca, J. C. Pedregosa, R. E. Carbonio, and R. C. Mercader. J. Solid State Chem., 2003, 175, 252–257.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. El Hachmi.

Ethics declarations

The authors declare that they have no conflict of interests.

Additional information

Text © The Author(s), 2020, published in Zhurnal Strukturnoi Khimii, 2020, Vol. 61, No. 6, pp. 913–924.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Hachmi, A., Manoun, B., Tamraoui, Y. et al. Structural and Mössbauer Studies of Sr1.5Ca1.5Fe2.25Mo0.75O9−δ and Sr1.92Ca1.08Fe2.04W0.96O9−δ Double Perovskites. J Struct Chem 61, 861–872 (2020). https://doi.org/10.1134/S0022476620060049

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476620060049

Keywords

Navigation