Skip to main content
Log in

Features of Extended XPS Spectra of C2FBr0.15 Intercalate and Silver Foil

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

The possibility to obtain novel data by standard electron spectroscopy and quantum chemical techniques is exemplified by C2FBr0.15 intercalate and silver foil. The features of extended X-ray photoelectron spectra are interpreted by electronic transitions in the valence band of similar unit cells. The analysis of experimental and calculated spectra reveals two states of intercalated Br2: molecular and chain-like. The interaction of Ag with NO2 at 300–520 K is limited by the formation of an oxidized state in the near-surface layer with a thickness of ∼6 A, with the metallic state of silver dominating in the Ag3d И Ag MNN spectra. Geometric parameters, states of atoms, and the character of bonds between them are consistent with the previously obtained results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Pielichowski, T. M. Majka. Polymer Composites with Functionalized Nanoparticles. Elsevier: Amsterdam, 2019.

    Google Scholar 

  2. B. A. Bhanvase, V. B. Pawade, S. J. Dhoble, S. H. Sonawane, and M. Ashokkumar. Nanomaterials for Green Energy. Elsevier: Amsterdam, 2018.

    Book  Google Scholar 

  3. D. Briggs and M. Seach. Practical Surface Analysis by Auger and X-ray Photoelectron Spectroscopy. Wiley: Chichester, 1983.

    Google Scholar 

  4. D. P. Woodruff and T. A. Delchar. Modern Techniques of Surface Science. Cambridge Univ. Press: Cambridge, 1986.

    Google Scholar 

  5. G. Bunker. Introduction to XAFS: A Practical Guide to X-ray Absorption Fine Structure Spectroscopy. Cambridge University Press: Cambridge, 2010.

    Book  Google Scholar 

  6. J. Sá. High Resolution XAS/XES: Analyzing Electronic Structures of Catalysis. CRC Press: Boca Raton, 2014.

    Book  Google Scholar 

  7. A. Cholach and V. Tapilin. Appl. Surf. Sci., 2001, 180, 173.

    Article  CAS  Google Scholar 

  8. A. Cholach and V. Tapilin. J. Chem. Phys., 2013, 138, 104201.

    Article  PubMed  Google Scholar 

  9. J. Rabalais. Principles of Ultraviolet Photoelectron Spectroscopy. Wiley: NY, 1977.

    Google Scholar 

  10. O. Sedelnikova, L. Bulusheva, I. Asanov, I. Yushina, and A. Okotrub. Appl. Phys. Lett., 2014, 104, 161905.

    Article  Google Scholar 

  11. J. Yang, F. Bussolotti, S. Kera, and N. Ueno. J. Phys. D: Appl. Phys., 2017, 50, 423002.

    Article  Google Scholar 

  12. A. R. Cholach. In: Advanced Surface Engineering Research/Ed. M. A. Chowdhury. IntechOpen: London, 2018, 147–167.

  13. A. R Cholach., I. P. Asanov, A. A. Bryliakova, and A. V. Okotrub. Phys. Chem. Chem. Phys., 2017, 19, 15842.

    Article  Google Scholar 

  14. A. Cholach, I. Asanov, A. Bryliakova, T. Asanova, D. Pinakov, A. Okotrub, and M.-G. Kim. AIP Adv., 2018, 8, 085319.

    Article  Google Scholar 

  15. A. R. Cholach, I. P. Asanov, and A. A. Bryliakova. J. Struct. Chem., 2017, 58(6), 1160.

    Article  CAS  Google Scholar 

  16. A. B. Bourlinos, K. Safarova, K. Siskova, and R. Zbořil. Carbon, 2012, 50, 1422.

    Article  Google Scholar 

  17. V. I. Sysoev, A. V. Okotrub, I. P. Asanov, P. N. Gevko, and L. G. Bulusheva. Carbon, 2017, 118, 225.

    Article  CAS  Google Scholar 

  18. H. Chang, J. Cheng, X. Liu, J. Gao, M. Li, J. Li, X. Tao, F. Ding, and Z. Zheng. Chem. Eur. J., 2011, 17, 8896.

    Article  CAS  PubMed  Google Scholar 

  19. I. P. Asanov, A. V. Okotrub, A. V. Gusel’nikov, I. V. Yushina, D. V. Vyalikh, and L. G. Bulusheva. Carbon, 2015, 82, 446.

    Article  CAS  Google Scholar 

  20. G. Liao, J. Fang, Q. Li, S. Li, Z. Xu, and B. Fang. Nanoscale, 2019, 11(15), 7062.

    Article  CAS  PubMed  Google Scholar 

  21. A. V. Kalinkin, M. Yu. Smirnov, I. O. Klembovskii, A. M. Sorokin, A. Yu. Gladky, and V. I. Bukhtiyarov. Kinet. Catal., 2018, 59(7), 1726.

    CAS  Google Scholar 

  22. S. Tougaard and I. Chorkendorff. Phys. Rev. B, 1987, 35, 6570.

    Article  CAS  Google Scholar 

  23. A. V. Kalinkin, A. M. Sorokin, M. Yu. Smirnov, and V. I. Bukhtiyarov. Kinet. Catal., 2014, 55, 371.

    Article  Google Scholar 

  24. Casa Software Ltd, 1999–2010. Homepage: www.casaxps.com

  25. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcovitch. J. Phys.: Condens. Matter, 2009, 21, 395502.

    PubMed  Google Scholar 

  26. J. Perdew, A. Ruzsinszky, G. Csonka, O. Vydrov, G. Scuseria, L. Constantin, X. Zhou, and K. Burke. Phys. Rev. Lett., 2008, 100, 136406.

    Article  PubMed  Google Scholar 

  27. P. Blochl. Phys. Rev. B, 1994, 50, 17953.

    Article  CAS  Google Scholar 

  28. N. Marzari, D. Vanderbilt, A. de Vita, and M. Payne. Phys. Rev. Lett., 1999, 82, 3296.

    Article  CAS  Google Scholar 

  29. Ch.-H. Hu, P. Zhang, H.-Y. Liu, Sh.-Q. Wu, Y. Yang, and Z.-Z. Zhu. J. Phys. Chem. C, 2013, 117, 3572.

    Article  CAS  Google Scholar 

  30. N. Bausk, S. Erenburg, N. Yudanov, and L. Mazalov. J. Struct. Chem., 1996, 37, 913.

    Article  Google Scholar 

  31. J. Perdew, K. Burke, and M. Ernzerhof. Phys. Rev. Lett., 1996, 77, 3865.

    Article  CAS  PubMed  Google Scholar 

  32. N. Ooi, A. Rairkar, and J. Adams. Carbon, 2006, 44, 231.

    Article  CAS  Google Scholar 

  33. M. Uda, A. Nakamura, T. Yamamoto, and Y. Fujimoto. J. Electr. Spectr. Relat. Phenom., 1998, 88–91, 643.

    Article  Google Scholar 

  34. H. S. Uhm, J. H. Choi, G. Cho, B. J. Park, R. J. Jung, and E. H. Choi. Curr. Appl. Phys., 2013, 13, 396.

    Article  Google Scholar 

  35. B. Timmermans, A. Hubin, N. Vaeck, and F. Reniers. Surf. Interface Anal., 2004, 36, 798.

    Article  CAS  Google Scholar 

  36. N. Yudanov, L. Chernyavskii, V. Lisoivan, and I. Yakovlev. J. Struct. Chem., 1988, 29, 412.

    Article  Google Scholar 

  37. P. C. Eklund, N. Kambe, G. Dresselhaus, and M. Dresselhaus. Phys. Rev. B, 1978, 18, 7069.

    Article  CAS  Google Scholar 

  38. B. Powell, K. Heal, and B. Torrie. Mol. Phys., 1984, 53, 929.

    Article  CAS  Google Scholar 

  39. J. Feldman, W. Elam, A. Ehrlich, E. Skelton, D. Dominguez, D. Chung, and F. Lytle. Phys. Rev. B, 1986, 33, 7961.

    Article  CAS  Google Scholar 

  40. N. Pauly, S. Tougaard, and F. Yubero. Surf. Sci., 2014, 630, 294.

    Article  CAS  Google Scholar 

  41. J. Gong, R. Dai, Z. Wang, and Z. Zhang. Sci. Rep., 2015, 5, 9279.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. M. P. Seah. J. Electron Spectrosc. Relat. Phenom., 1998, 97, 235.

    Article  CAS  Google Scholar 

  43. A. C. Parry-Jones, P. Weightman, and P. T. Andrews. J. Phys. C, 1979, 12, 1587.

    Article  CAS  Google Scholar 

  44. H. D. Hagstrum. Phys. Rev., 1954, 96, 336.

    Article  CAS  Google Scholar 

  45. H. Shinotsuka, S. Tanuma, C. J. Powell, and D. R. Penn. Surf. Interf. Anal., 2015, 47, 871.

    Article  CAS  Google Scholar 

  46. D. Jelić1, S. Mentus, J. Penavin-Škundrić, D. Bodroža, and B. Antunović. Contemp. Mater., 2010, I(2), 144.

    Article  Google Scholar 

  47. L. H. Tjeng, M. B. J. Meinders, J. van Elp, J. Ghijsen, G. A. Sawatzky, and R. L. Johnson. Phys. Rev. B, 1990, 41, 3190.

    Article  CAS  Google Scholar 

  48. S. W. Gaarenstroom and N. Winograd. J. Chem. Phys., 1977, 67(8), 3500.

    Article  CAS  Google Scholar 

  49. D. Yu. Zemlyanov, A. Nagy, and R. Schlögl. Appl. Surf. Sci., 1998, 133, 171.

    Article  Google Scholar 

Download references

Funding

The work was supported by RFBR (grant 17-03-00049), budget project AAAA-A17-117041710078-1 for the Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences and used the facilities of the Supercomputer Center, Institute of Computational Mathematics and Mathematical Geophysics, Siberian Branch, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. R. Cholach.

Ethics declarations

The authors declare that they have no conflict of interests.

Additional information

Russian Text © The Author(s), 2020, published in Zhurnal Strukturnoi Khimii, 2020, Vol. 61, No. 4, pp. 553–562.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cholach, A.R., Asanov, I.P., Bryliakova, A.A. et al. Features of Extended XPS Spectra of C2FBr0.15 Intercalate and Silver Foil. J Struct Chem 61, 523–532 (2020). https://doi.org/10.1134/S0022476620040046

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476620040046

Keywords

Navigation