Skip to main content
Log in

Quantum Chemical Modeling of Electrochemical Consecutive Reduction of Fe(III) Aqua- and Aqua-Hydroxocomplexes

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Quantum chemical modeling of Fe(III), Fe(II), and Fe(I) aqua-, aqua-hydroxo-, and aquadihydroxocomplexes is presented. The mechanism of a consecutive transfer of two electrons is studied as these forms are electrochemically reduced from an aqueous solution. The reorganization energy of the solvent and the inner sphere of studied reagents is calculated, standard redox potentials are estimated. Based on Marcus theory, the activation energy of two steps of Fe(III) reduction is estimated and the second electron transfer is shown to be rate controlling, while the energy barrier is increased due to the products of Fe(III) hydrolysis. The model predictions are in qualitative agreement with previously reported experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. I. Danilov, V. S. Protsenko, and A. V. Ubiikon′. Russ. J. Electrochem., 2005, 41(12), 1282.

    Article  CAS  Google Scholar 

  2. S. Perez-Villar and J. Carretero-Gonzalez. RSC Advances, 2014, 4, 59862.

    Article  CAS  Google Scholar 

  3. D. Pilone and G. H. Kelsall. Electrochim. Acta, 2006, 51, 3802.

    Article  CAS  Google Scholar 

  4. J. J. O′M. Bockris, D. Drazic, and A. R. Despic. Electrochim. Acta, 1961, 4, 325.

    Article  CAS  Google Scholar 

  5. J. T. Hupp and M. J. Weaver. Inorg. Chem., 1983, 22, 2557.

    Article  CAS  Google Scholar 

  6. W. Li, T. Cochell, and A. Manthiram. Sci. Rep., 2013, 3, Article № 1229.

  7. A. F. Dresvyannikov and M. E. Kolpakov. Russ. J. Phys. Chem., 2003, 77(5), 717.

    Google Scholar 

  8. A. F. Dresvyannikov, M. E. Kolpakov, and Ya. V. Ivshin, O.A. Lapina. Prot. Met., 2005, 41(6), 597.

    Article  CAS  Google Scholar 

  9. R. L. Martin, P. J. Hay, and L. R. Pratt. J. Phys. Chem. A, 1998, 102, 3565.

    Article  CAS  Google Scholar 

  10. D. Kochand and S. Manzhos. MRS Commun., 2018, 8, 1139.

    Article  CAS  Google Scholar 

  11. R. Åkesson, L. G. M. Peterson, M. Sandström, and O. Wahlgren. J. Amer. Chem. Soc., 1994, 116, 8705.

    Article  Google Scholar 

  12. M. Uudsemaa and T. Tamm. J. Phys. Chem. A, 2003, 107, 9997.

    Article  CAS  Google Scholar 

  13. A. Bouzid and A. Pasquarello. J. Chem. Theory Comput., 2017, 13, 1769–1777.

    Article  CAS  PubMed  Google Scholar 

  14. M. A. Caro, O. Lopez-Acevedo, and T. Laurila. J. Chem. Theory Comput., 2017, 13, 3432.

    Article  CAS  PubMed  Google Scholar 

  15. D. A. Rose and I. Benjamin. J. Chem. Phys., 1994, 100, 3545.

    Article  CAS  Google Scholar 

  16. B. B. Smith and J. W. Halley. J. Chem. Phys., 1994, 101, 10915.

    Article  CAS  Google Scholar 

  17. R. R. Nazmutdinov, W. Schmickler, and A. M. Kuznetsov. Chem. Phys., 2005. 109, 257.

    Article  CAS  Google Scholar 

  18. R. R. Nazmutdinov, T. T. Zinkicheva, G. A. Tsirlina, and Z. A. Kuz′minova. Electrochim. Acta, 2005, 50, 4888.

    Article  CAS  Google Scholar 

  19. M. J. Frisch, G. W. Trucks, H. B. Schlegel et al. Gaussian 09, Revision B.01. Gaussian, Inc., Wallingford CT, 2009.

    Google Scholar 

  20. J. P. Perdew, K. Burke, and V. Ernzerhof. Phys. Rev. Lett., 1966, 77, 3865.

    Article  Google Scholar 

  21. M. Radoń, K. Gąssowska, J. Szklarzewicz, and E. Broclawik. J. Chem. Theory Comput., 2016, 12, 1592.

    Article  CAS  PubMed  Google Scholar 

  22. Chemcraft–Graphical Software for Visualization of Quantum Chemistry Computations. https://www.chemcraftprog.com

  23. S. Amira, D. SpÅngberg, M. Probst, and K. Hermansson. J. Phys. Chem. B, 2004, 108, 496.

    Article  CAS  Google Scholar 

  24. S. Amira, D. SpÅngberg, V. Zelin, M. Probst, and K. Hermansson. J. Phys. Chem. B, 2005, 109, 14235.

    Article  CAS  PubMed  Google Scholar 

  25. B. S. Brunschwig, C. Creutz, D. H. Macartney, T.-K. Sham, and N. Sutin. Faraday Discuss. Chem. Soc., 1982, 74, 113.

    Article  Google Scholar 

  26. R. A. Marcus. J. Chem. Phys., 1965, 43, 679.

    Article  CAS  Google Scholar 

  27. CRC Handbook of Chemistry and Physics / Ed. D. R. Lide, 2005.

  28. S. Remita, P. Archirel, Faraday Discuss M. Mostafi. J. Phys. Chem., 1995, 99, 13198.

    CAS  Google Scholar 

  29. R. R. Nazmutdinov. Rus. J. Electrochem., 2002, 38, 131.

    Google Scholar 

  30. L. A. Curtiss, J. W. Halley, J. Hauptman, N. C. Hung, Z. Nagy, Y.-J. Rhee, and R. M. Yonko. J. Electrochem. Soc., 1991, 138, 2032.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation (project No. 17-13-01274).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R. R. Nazmutdinov or A. F. Dresvyannikov.

Additional information

Conflict of Interests

The authors declare that they have no conflict of interests.

Russian Text © The Author(s), 2019, published in Zhurnal Strukturnoi Khimii, 2019, Vol. 60, No. 8, pp. 1280–1287.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nazmutdinov, R.R., Zinkicheva, T.T., Kolpakov, M.E. et al. Quantum Chemical Modeling of Electrochemical Consecutive Reduction of Fe(III) Aqua- and Aqua-Hydroxocomplexes. J Struct Chem 60, 1226–1233 (2019). https://doi.org/10.1134/S0022476619080031

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476619080031

Keywords

Navigation